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Abstr

This thesis describes the development of a Fortran computer code which models the interaction between

an incompressible, potential flow and a he:nogeneous, elastic structure. The boundary element technique was

chosen over finite differences and finite elements because of its ability to numerically approximate both the fluid

and structural behavior with a common definition of the fluid/structure boundary.

The ability to accurately model solid and fluid boundaries can be quite important in the fields of

aeroelasticity and structural analysis. The nature of these boundaries is what determines the final solution to

a problem of fluid flow past an elastic body. OPrn the complexity of defining and tracking the boundary and

its associated boundary conditions has led the user to assumptions of rigid bodies, and therefore rigid

boundaries. Certainly the tasks of defining the domain grids for finite difference and finite element techniques

have not simplified the process.

In the computer code developed for this thesis the fluid and structural governing equations are simulta-

neously solved to determine the pressure about the structure and the corresponding elastic deformations. The

deformations are applied to the original boundary, resulting in a new geometry. This new geometry is used to

recalculate the pressure field about the structure, and the process is iterated until a final steady-state solution

is obtained.

While simplifying assumptions have bten made in the execution of this thesis, the general boundary

element techique has the ability to model complex, higher order problems. The initial results obtained during

the course of this work show promise, and follow-on studies are recommended.

ix



SOLUTION OF POTENTIAL FLOW PAST AN ELASTIC BODY

USING THE BOUNDARY ELEMENT TECHNIQUE

I. Introduction

This thesis investigates the simultaneous sulution of the interaction between an incomp'essible,

potential flow and a homogeneous, elastic structure using the boundary element technique. The ability to

accurately model the fluid and structural boundaries can be quite important in the fields of aeroelasticity as

the emphasis in aeroelasticity is;

.. phenomena which exhibit appreciable reciprocal interaction (static or dynamic) between

aerodynamic forces and the deformations induced thercby in the structure of a flying vehicle, its
control mechanisms, or its propulsion system. (1:1)

For example, the twist angle-of-attack of a wing is composed of a series of incremental twists each caused

* *aphe 
e na whiche 

xhiit 
t k a e ibl rc 

ompo se a tod sai 
rd n m c ew e

by the aerodynamic loading of the previous geometry (1: Eq 6-7). The original wing geometry causes

aerodynamic loading which in turn produces a twist, or deformation, to the wing. This deformation causes

a slightly changed ,oading which in turn causes additional twist, and so on. The ability to compute this

incremental deformation determines the final solution to a problem of fluid flow past an elastic body. The

traditional approach to aeroelasticity is to perform a modal analysis of the structure assuming structural

shapes and determining the aerodynamic loads due to those shapes. The approach taken in this research

presents a very different one in that the fluid and structure governing equations are simultaneously solved

by iterating and converging on a final solution in the sense of the example just quoted. The iterative

approach performed in this thesis is valid for steady-state problems, however the general boundary element

technique has the capability to model non-steady problems. The problem might just as easily been

formulated as the long-term resronse of a non-steady fluid/structure system.

The major thrust of this thesis is to research the application of the boundary element technique to

compute the incremental deformation of an elastic structure in fluid flow. The boundary element, or

1



boundary integral, method has been used to analyze the structure - fluid interaction problems in water

waves. As described in References 6 and 11 a semi-infinite (half) domain was formed using the surface of

the ocean as a free boundary, and the ocean bottom as a solid boundary. The solution was simultaneously

solved using an unsteady approach with frequency domain decomposition.

The boundary element technique was chosen over finite differences and finite elements because of its

ability to numerically approximate both the fluid and elastic structure governing equations with a common

definition of the fluid/structure boundary.

In the iterative process the flow conditions (velocity and density of the fluid at infinity), the

structural conditions (Young's modulus and Poisson's ratio), and the original boundary geometry specify

the critical state. The first step of the process is to compute the fluid pressure field about the structure, and

then determine the structural deformations caused by the pressure distribution. The new boundary geometry

is automatically calculated from the deformations, and the pressure field recalculated. This process can be

iterated to show how the structure changes shape.

An application of this program technique can be seen in a flight test program currently being

performed at the 4950th Test Wing, Wright-Patterson Air Force Base. The MILSTAR airworthiness

program is a flight test program to certify the airworthiness of a radome to cover a satellite antenna for the

MILSTAR terminal system (4). Because of a clearance of only one-half inch between the antenna and the

radome, one objective of the flight test program was to measure radome deformations to verify adequate

clearance. The analytical prediction of the radome deformations became a major task of the test team, and

was found to be highly manpower intensive. The aircraft/radome geometry was first entered into a

computational fluid dynamics prugram called QUADPAN (10) which calculated the pressures about the

radome assuming si ,-: . steady-state flow. QUADPAN itself is a type of boundary element code. The

radome structure ws also t- -eled with a NASTRAN finite element geometry grid. Both of these tasks

took several weekL- o set u,. The users then ran the QUADPAN code at the desired flight conditions, fed

the resulting pressures through a program to translate them from the center of the QUADPAN panels to the

NASTRAN nodes, then input the translated pressure into the NASTRAN code to result in the final radome

deformation. Information on the changes to the pressure field due to the deformations, and the resulting

2



change in deformation would require extensive remodeling to the QUADPAN and NASTRAN geometry

models after each iteration. Due to the extensive effort involved in this remodeling, no iterations were

performed on the pressure/deformation solutions. Deformations recorded during flight were used to

determine the accuracy of the predicted deformations.

The boundary element code presented in this thesis has several advantages to the above method. The

users would only be required to set up the original aircraft and radome boundaries which is quite similar in

work effort to the generation of the QUADPAN model. Once the flow conditions and structural properties

were input, the program would then calculate the radome deformations and iterate to a steady-state solution.

A more extensive unsteady boundary element program than that presented in this research could conceivably

predict radome flutter using a time-marching scheme.

Subsequent chapters of this thesis covers a brief theoretical background of the boundary element

models used in the computer program, a description of the implementation of the theory, results of the

investigation, and conclusions and recommendations drawn from the research performed. While

simplifying assumptions have been made in the execution of this investigation, the general boundary

element technique has the ability to model complex governing equations and higher order approximation

techniques. The initial results obtained during the course of this work show promise towards the

suitability of the boundary element method for such as task, and follow-on studies are recommended to

further develop a code usable in the field.

3



II. Theoretical Backgound

Numerical Arigzoximation Techniques (2: Chap 2, 3: Chap 1)

During the recent decades the emphasis of engineering computations has shifted from analytical

approximating techniques to massive numerical approximations. Some of the most popular numerical

approximation techniques today are the finite difference method (FDM), the finite element method (FEM)

and the boundary element method (BEM).

The first two methods are 'domain' methods.

These techniques discretize the domain of the problem under consideration into a number
of elements or cells. The governing equations of the problem are then approximated over the
region by functions which fully or partially satisfy the boundary conditions. (2:1)

In the finite difference method a series of nodes in a domain grid is defined and the discretized version of the

governing equation is satisfied only at those nodes. In the finite element method, the governing equation is

satisfied in an average sense over a region or element. In the case of the FEM the integrations are

conducted over the domain. In both methods, the user must discretize the domain as well as the boundary

of the region under consideration.

The third method is known as the boundary integral method, or the boundary element method, and

sansfies the governing equations throughout the domain but only approximates the boundary conditions.

One of the first engineering applications of the BEM was the solution for Laplace-type problems by O.D.

Kellogg in 1953 (7). J.L. Hess was also an important contributor to the development and use of boundary

element methods in fluid mechanics problems (5). Integral equation techniques have been in development

since the early 1950s, but they were overshadowed by the more popular finite difference and finite element

techniques due to the difficulty of defining the appropriate Green's functions for the BEM. Recently,

engineers have begun to rediscover boundary element methods and their advantages. A few of these

advantages are;

a. The governing equations are reduced from domain integrals to boundary integrals thereby reducing

the order of the problem by one spatial dimension.

4



b. Boundary method techniques can be coupled with other techniques to improve the accuracy of the

solution.

c. The boundary method can simply model problems with infinite domains.

d. Finally, and most important to the application of this thesis, only the boundary of the domain

must be discretized. Once the boundary geometry has been defined, both interior and exterior problems may

be solved without discretizing either domain. This advantage facilitates the modeling and tracking of

moving boundaries.

For practical engineering problems (full aircraft, three-dimensional geometry) current computational

ability favors a mixture of boundary integral formulations where applicable, augmented by finite difference

methods for regions where non-linear effects dominate.

All three of the approximation techniques are numerically related, and may be derived through the use

of the weighted residual technique. As an example of the weighted residual formulation consider a

potential function u on a domain Q which satisfies the governing equation:

02
SV u-b= 0 indomainQ (1)

The boundary conditions are of two types

(a) Essential or Dirichlet conditions, such as u = u on r 1  (2)

(b) Natural or Nemann conditions, such as u - on r 2  (3)d n 'nd

The barred terms are the known conditions. The entire boundary is composed of r1 and r 2 . The outward

normal is defined as n (Figure 1).

When the function u and its boundary conditions are numerically approximated, errors are introduced

into the problem solution. A weighting function w* with continuous first derivatives is used to distribute

the error over the domain and boundary.
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Outward normal n

Domain Q
dt~hi

r1dfndon r ~ r

Figure 1. Domain and Boundary Notation

The weighted residual statement becomes;

f V u-b) w d =O indonain Q (4)

Further discussion on the weighted residual technique is found in Appendix C. The finite difference method

can be obtained from Equation 4. and is called the "original statement";

f(Vu b )w" f Lw U. "Q d an fw r o dn5

For finite differences, the basis functions u and w* are normally different, where w* is usually the Dirac

delta function and the derivatives of u are local expansions such as Taylor series.

@6



Integrating Equation 4 by parts once results in the "weak statement";

aw+ r +u u -,.dr (6)
-+bwdr -.- w

(;MkXk + bwran rUo

Finite element techniques base numerical approximations on this form of the governing equation. Most

finite element models are based on the method of Galerkin where both u and w* are related so that w* is a

variation of u associated with virtual displacements or velocities.

Integrating Equation 6 by parts once more obtains the "inverse statement";

f (Vw2 w u M f u dI' fr w*LudF + f bw -d (7)

Equation 7 can be rewritten as;

f ( V 2wUud aw f~dr + fuwcir

L w- - dF + fb wo M (8)

2  2

Equation 8 is the basis for the boundary element method. Generally the weighting function is chosen so

that the left-side of the equation vanishes leaving the boundary terms.

Boundary Element Formulation (2: Chap 3, 3: Section 2.4)

If the boundary conditions are now defined as:

q= a md q = v (9)

)a



the boundary element formulation is:

•a
(V w )ud=- qw~ drf q w clr+

r2

fruq*dr + fruqdr +fb w dfl (10)

Assume that a concentrated charge is acting at point '. The governing equation becomes:

2 i
V u +A = 0 (1

where Ai is a Dirac delta function at point T. The solution to this equation is called the fundamental

solution where the effects of boundaries at infinity are considered. If equation 11 is satisfied with the

fundamental solution then:

f u(V w )dil =u (12)

Equation 10 now becomes:

u +f uqcW + u q drr = u d + qu dr + f bw d (13)
f2 Ir 2 1r.f

Equation 13 is valid for any point in domain "., but must be taken to the boundary to solve for the

boundary conditions. To do this a region with radius e is formed around the boundary point i (Figure 2).

Equation 13 is separated into integrals around re and around r-re. By taking the limit as e approaches zero,

the integrals over r - re are continuous. The integral over re for the right hand side contains a weak

singularity but remains continuous. The left side integral contains a higher order singularity because of

the derivative term. As the point i approaches the boundary along the normal, it produces a discontinuity

is as the point passes through the boundary.

8



on
Boundary r

Source point i

Figure 2. Applying the BEM Equation to the Boundary

On the boundary Equation 13 is reduced to:

2iXcu+fuq r r Jqur d = r 2J + u + I qu dr + bw .f (14)

The term (2 ir ci) represents the discontinuity and is a function of the boundary shape. By employing a

method similar to that for evaluating the discontinuity, it can be shown that the term equals the internal

angle of the boundary at the point i (3: 63,64). For a smooth boundary the term equals 7C and ci becomes

1/2. A second method of calculating ci will be discussed in Chapter 3.

Direct and Indirect Methods

The direct formulation of the BEM is the formulation discussed above. It may be derived through the

use of we.,hted residuals as shown, or through Green's third identity, Betti's or similar theorys. The final

solution is the function u and its derivatives. For example, when modeling the elastic structure the final

solution is the deformation at the node points. An advantage of the direct formulation is that a general

surface with comers or edges may be used.

The indirect formulation of the Laplace equation problem sets up the problem as solely a single-layer

9



potential or solely a double-layer potential of continuous source distributions over the boundary. The

indirect method carries a restriction that the boundary must be smooth. The equations are then solved for

the source densities. Further discussion on the indirect method may be found in Reference 7.

Elements

As the name 'boundary element method' implies, the boundary of domain Q is divided into segments

called elements (Figure 3). The general theory places no restrictions on the modeling of the element. For

simplicity, linear (flat) elements were used in the development of this thesis, but higher order elements

may be used to model the boundary more smoothly.

Element

a) 8 linear elements (8 nodes) b) 4 quadratic elements (8 nodes)

Figure 3. Geometry Elements

The order of the geometry model will determine the continuity of the geometry slope. Throughout a

continuous boundary the du/dn terms may be calculated everywhere, but on a discontinuous boundary the

du/dn terms are undefined at the ends of the elements because the normal is undefined. A discontinuous

geometry slope will also cause the solution to display sharply singular behavior in the vicinity of the

corners. The major disadvantage to continuous geometry models is the degree of effort involved in the

10



implementation. For the purposes of this investigation, linear geometry modeling was used and therefore

the geometry slope is discontinuous at the element corners. The consequences of using discontinuous

geometry are discussed in Chapters 4 and 5

Approximations of the function u and its derivatives are assumed to vary over the element. The

governing equation is then written at various locations on each element called nodes. The number of nodes

on each element corresponds to the order of the approximating functions of u and q, and not necessarily to

the order of the element geometry. For example, u may be modeled with a parabolic function , and

therefore three function nodes, while the geometry element may be linear (Figure 4). The functions u and q

do not have to be modeled with the same order, in fact it may be more advantageous to take q of one order

less than u because it is the derivative of u. For the purpose of this research, the approximations of u and q

were equivalent order for simplicity of implementation.

G u U G

Order of Geometry = 1st (2 nodes)

Order of Function u = 2nd (3 nodes)

Order of Function q = 1st (2 nodes)

Figure 4. Approximating Order of Functions and Corresponding Nodes

Internal and External Domains

At each node an outward normal to the element is calculated. The outward direction is defined in

relation to whether an internal or external problem is being solved. An internal problem is one which the

domain under study, " is enclosed by the boundary, r. When the domain is outside the boundary, it is an

external problem (Figure 5). In the case of potential flow past an elastic structure, the flow would be an

external problem and the structure is an internal problem. The ability of the boundary element technique to

11



solve both internal and external solutions with the same boundary geometry allows the user to easily define

and track moving boundaries.

Domain 9

DomainD

a) Internal Problem b) External Problem

Figure 5. Internal and External Problem Definitions

0

0
12



M. Development of Models

The solution technique first calculates the potential of the fluid about the structure. Next, the

velocities and pressures on the surface due to the potential are determined. Finally, the elastic deformations

from the pressure field are found. A direct boundary element formulation was used for the potential,

velocity and deformation models. This research was limited to a two-dimensional problem, and the

following model development will only discuss two-dimensional solutions. A three-dimensional problem

is conceptually solved in a similar manner.

PoteniaLlo

The beginning equation of the direct method boundary element formulation for potential flow is:

,ci(V ui(t) + u(x) q (4,x) dr(x) = ,q(x) w_,x d(x) (15)

where;

are the locations of a continuous distribution of sources throughout domain 0

x are the coordinates for the point where the potential is being evaluated

r is the boundary of the domain

i is a point where the fundamental solution is applied, and is called a nodal point

u(x) is the unknown and is the potential at point x

q = du/dn

w*(t,x) is the weighted residual weighting function

q*(4,x) = dw*/dn

The fundamental solution to Laplace's equations is used as the weighting function w*. This solution

is the free space Green's function for the governing equation.

13



For two-dimensional problems the solution is:

w = I- In (16)
2x r

Equation 15 has been divided through by 2 r so that the 2 x appears in the denominator of w* and q*. The

distance between k and x is shown in Figure 6 and is determined by:

2  2
, Y(x+ (y(©- y(x)) (17)

for a Cartesian two-dimensional system.

Source Point,

y\

Field Point x

x

Figure 6. Source and Field Points

14



When the boundary is discretized into elements Equation 15 becomes:

N (Nt
ciu + I fuq dr= I frwqd- (18)

j=l j=1

where N is the number of geometric elements and rj is the length of element j.

An elemental coordinate system is set up for each element as shown in Figure 7. The values of u

and q vary over the element as a function of the coordinate I.

y

= -11

x

Figure 7. Elemental Coordinate System

The functions u and q may be approximated with shape, or interpolation, functions such that:

( U I
u (r1)=- NI(Tl)uI+ N2(ru 2+. . + N,(T)u, - [NI(TI),N 2(T), N(T1) 2 (19)

15



q,q(rii=N()q 1 +N 2( f.X 2 +.. + N,,(", [NI(T),N 2 T)0 .. N,(71) i q2 (20)

where r is the order of the function modeling (i.e., second, thirdetc). Appendix C provides a brief overview

of shape functions. Notice that ur and qr are the amplitudes of the functions at the node points and are no

longer functions of Ti. Therefore, they may be taken outside the integrals.

The integrals are with respect to the boundary F, but u and q are functions of T. A Jacobian is used

to transform the integral as detailed in Appendix C;

C3 = IGIdn (21)

By using Equations 19,20 and 21, Equation 18 now becomes:

ciui + N(f N (),N 2(j), N,(11)]q* IGI dr) {U2 } =(22)O(
U'r

IJN01),N2(T, .. N,(Tl) w''Id(fri] ~
II~j I

Over each element j there are r nodes. Globally, there are m =j x r total nodes on the boundary (Fig 8).

The integral on the left-hand side of Equation 22 can be written as:

SI)qIG n hij,hi . .hij (23)
j ... =17...

17



k
where the hij are influence coeficients difning the interaction between the point i under

consideration and a particular node k on element j. The same can be done for the right-hand side integral,

so that Equation 22 can now be written as:

N k N k
ciui + Z hi 1Uk gJqk (24)

j=l j=l

18

Global Node Numbers 17 3

16 2 Element 6

6 11 31223

Elemett 3 Element 54 Eeet4
3 Elem nt 2

~Element 1

r=3, j=6, m= 18
Element Node Numbers

Figure 8. Elemental and Global Node Numbering

When summed over all the elements, equation 24 can be written;

i i + Hil , Hi2 .... Him J - . . Gim .. (25)

where m equals the total number of nodes around the boundary in the global numbering system

and:

Hi. = JrN.j (1 q (.x) IGI dq (26)

17



where the index i is on the node i and nj is the nth node on element j in the global numbering system.

Using Figure 8 for refece, H1 15 is the influence at global rode 15 (nf=f3,j = 5) due

to point 1. The ci ui term may be addd to the H matrix such that:

Hij = Hij forij (28)

Hij = Hij+ c for i =j

Equation 25 is repeated for each node i (m total) and produces a matrix equation;

H u= G q (29)

For a smooth boundary, it can be shown that the coefficient, ci, is equal to 1/2 as discussed in Chapter 2.

If the surface is not smooth, it will not be equal to 1/2. The diagonal term of H may also be calculated by

using the fact that when a uniform potential is applied on the whole body the sum of the values of q's must

be zero. For internal or closed problems;

HI = 0 (30)

so that the sum of each row in H should be zero (3:111). Therefore,

N
Hi = - Hij i=1,2 ....... Nij (31)

j=1

For exterior, or unbounded, problems it can be shown (3:112) that:

N
Hi=- Hij+l i=1,2 ....... N,i j (32)

j=1

The boundary conditions, q, can be calculated using the assumption of zero flow through the boundary.

This means that the source must produce equal and opposite flow to the flow at the boundary, or:

Q n=-nV. (33)
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where ni is the outward unit normal at point i and V. is the flow condition at infinity.

The matrices H and G may be calculated numerically using numerical quadrature for the integral

terms. Equation 29 is a m x m system of equations. As the integration progresses around the boundary,

for each node i there will be a panel for which the integration is singular (r approaches and equals 0). Care

must be taken to properly integrate these singular panels. Note that;

ql(-x) = w = a(2- In1) = -L(n'V(Inl) (34)

On a flat singular panel the normal is perpendicular to the panel and therefore;

n*V(n.)= 0 (35)
r

Therefore, the H terms are zero on the singular panel. With higher order geometric modeling this is not

the case and this term must be addressed.

Velocity and Pressure Distribution

Once Equation 29 is solved for the potential at the nodes, the velocity and pressure distribution at the

nodes can be determined. The components of the perturbation velocity at node i are calculated using:

f r) w(ax1  dr(x) - frU( x) dr(x) (36)

cir(x) = i N dx) ) - fxu xi (x)

A m x m system of equations may be set up for Equation 36 similarly to that described above, and

numerical quadrature used to calculate the terms of the matrices. The functions q(x) and u(x) are known

from previous calculations so that the velocity may be solved. The components of the perturbation

velocity in the x and y directions are:

O u-- -  
_

-
_

-  (37)
u = '2() and v = !M) (7N(x) W(x)

19



and the total perturbation velocity is calculated by*

P U + v(38)

The total velocity at nedz i is equal to:

V= V..-VP (39)

The pressure field about the body is computed using:

Cp=1 - (40)

P P.V Cp (41)

P,, =P'n and P y =P'ny (42)

Px and Py are the components of the pressure acting on the surface or the surface tractions.

ElasticStucture

The development of the boundary element formulation for the elastic structure is quite similar to that

of the potential flow. The structure consists of subregions formed by an outer boundary, inner boundary

and connecting elements as shown in Figure 9. The connecting elements allow the effect of a force at one

point on the boundary to be transferred around the structure. For this investigation, the same number of

nodes were used on the outside, inside and connecting elements although this is not required.

The beginning statement for each subregion is:

cijuj + fr PijuJdr = fr u1jPjd + f ujbj d (43)

where
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uj is now the unknown displacements in the j direction

Pj is the traction or natural boundary conditions in the j direction (the pressures calculated above)

bj is the body force in the j direction and is assumed zero for this research.

Connecting Subregion 4
Element /\

,urg Boundary Subregion 3

Outer

B oundarySubregion 
2

Figure 9. Structure Geometry

The fundamental solution w* for a two-dimensional plane strain problem is (2:187):

" = ( - 4v) In(r) 8ii + ij.. (44)
81(I-v)G

The solution p* is defined as:

* -1 (rr.
S4 x (l-v) r [x i  n (1 .n i ) (45)
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As with the potential flow equations, the functions u and q are represented with shape functions and

the integrals transformed from the dr to the dvh system.

Equation 43 can be written:

U2  P

ciui+ [hi 1, h 2 * . . . , Ghim] =[git, gi 2 9 . . . g ..... gim] (46)

Urn PM

m is the total number of nodes around the outer boundary and is equal to the nodes around the inner

boundary and also around the connecting elements. The approximating functions of u and q are modeled

with the same order, r, on all elements. Therefore, m = 3 x r nodes around the region. Note that the

matrix terms are 2 x 2 for the two-dimensional case because they contain the terms;

fi =g i-hi Y9i giffi  gj- (47)hij hijYqg [gij gij Y(

For the three-dimensional case the matrices would be 3 x 3.

Equation 46 produces a lx(3xrx2) system of equations for each node i. Equation 46 is calculated twice

for each of the nodes on the connecting element; once for the element to the left and once for the element

to the right. In this way the matrices have (4xrx2) rows. The final system of equastions is a (4xrx2) x

(3xrx2) system.

The coefficient ci may be handled similarly to Equation 29 to form the system of equations:

Hu = GP (48)

The ci coefficient may be calculated using rigid-body considerations in a bounded body (3:201). If a unit

rigid-body displacement is made in any direction Equation 48 becomes:

H I d = 0 (49)
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where I d is a vector of unit displacements in the d direction. The diagonal terms of H become:

N
hii= - hi fori j (50)

i=1

Assembly of Subregions. For each subregion in the structure the system in Equation 48 may be

developed. To solve for the deformations about the entire body, the systems of equations must be

assembled into a global system of equations. This is done by renumbering the nodes around the structure.

The nodes around the outside are numbered 1 to m, the nodes about the inside m+ 1 to 2m, and the nodes on

the connecting elements 2m+l to 3m (Figure 10). The H and G matrices are now (8xm) x (6xm). The

global system of equations is:

Mt am t a t a
H". Hi xL H aXs H, , H,.a, W

in in i i bn i

Ho.H C H asL n Han Ham U0H x
01 in x za m Ci 31n 1 3Hat.Hm,. Hg =Hu t,qHin ,r Ha i,

a a an an
H"., ; Hin M HM,=H"v Hi IW HornV autx

i2 i i3 i in i1 ui3y1H " 3. H k, 3. H an , K)yH Hi)y, H ., Y _M

H" 3. Hin)R Ha 3H". yy Hin y Han, yy

• •1

a n a t a t atnt a
G o., , Oil )m G cm aG c yG in x G a n y

in i im i in in
G " . j, G . G = v G i . , G . ,w

G a 0 MG G CM G = G an~ qatyx

G Gin ]a am. G vGinv Gya Wy
G" a Gin ZI Gan =G" xy Gin xy GM.V qa xq.

G"Gin) Ga G"GiY Ga v qGy
i2 in in i in in lqinyG cayGin G qmyG " yG in y Ga m yqc

I =a n C cm a a q
G " AG in A G =. YXG OA Y G in yy G an y

G" Gin3% G® YxGa Gin G
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where Hilk and Gijlk are the influence coefficients at node i due to panel j in the 1k direction.The boundary

forces around the boundaries are the pressures from the fluid and have been calculated previously. The

boundary tractions along the connecting surfaces are unknowns and must be calculated with the unknown

deformations. The columns of G and the corresponding rows of P are transferred to the left-hand side of

the equations forming a (8xm) x (8xm) matrix with (8xm) unknowns. This final set of equations may now

be solved for the unknown deformations and internal tractions.
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IV. Imnlementation

Once the potential, velocity and elastic deformation models were developed, they were coded into a

Fortran computer program. Several simplifications, assumptions and numerical approximations were

included in the program code.

The structure used during this research was a two-dimensional thick-walled cylinder with an outer and

inner radius (Figure 11). The geometry was modeled as flat elements with geometry nodes at the left and

right ends of the elements (r1-, lj=1). The number of elements around the cylinder could be varied so

that the cylinder could be modeled very crudely with 8 elements as shown in Figure 11, or finely with up

to 150 elements. The number of outer boundary elements, inner boundary elements and connecting

elements were equal for ease of geometry definition. The elements were numbered in a counterclockwise

direction with the structure domain remaining on the left-side as one travels around the outer boundary, and

on the right-side along the inner boundary. The connecting elements were specified so that the left end

would be on the outer boundary and the right end on the inner boundary.

The element Jacobian was calculated as detailed in Appendix C, and the outward normals calculated

by:

n.= andny- (52)
Jacobian Jacobian

Because of the counterclockwise setup of the elements, the outward normal on the outer boundary is

into the structure and therefore the correct sign for the potential flow calculations. For the elastic

deformation calculations a negative sign must be applied to the normal so that it may be an outward

normal for the structure. The inner boundary normal is in the correct direction for the elastic deformations.

The correct direction of the connecting elements outward normals were determined in the same manner.
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Figure 11. Geometry Modeled With 8 Flat Elements

The order of the potential, pressure and deformation approximation was equal and could be specified

from constant (1 node) to 4th order (5 nodes). Therefore, the potential, pressure and deformation were all

calculated at the same node. The general BEM formulation does not require this assumption. The distance

of the end nodes to the element comer, 8, was specified by the user. In this way the effect of the distance

between the end node and the comer could be investigated. The end node was never placed directly on the

comer (8 = 0). As previously discussed there are several difficulties that arise if the node is placed directly

on the comer which is a geometry slope discontinuity. The remaining nodes were spaced equally between

the end nodes (Figure 12) with the same number of nodes used on the outer, inner and connecting boundary

elements.
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Figure 12. Nodal Spacing Within An Element

Once the deformations at the node points were calculated, the deformations at the ends of each panel

were determined using the shape functions. For example, the deformations at the left end of a panel are:

uJj = -1) = N 1(4) u. I + N 2 (-1) Uz 2 + • + Nr(-1) ur (53)
Uy(-= -1) = N (1) Uy1 + N 2 (-1) Uy2 + . + Nr(4) u,,

where Ni(-1) is the shape function at rj=-1 for element node i, and u xi and u yi are the deformations at node

i on the element. The deformations at the right-end of the element were calculated in a similar manner.

Because the discontinuous slope at the comers causes stress concentrationsat the corners the deformations

are not continuous from element to element. In order to force continuity of the new geometry, the

deformations as each comer were averaged with the deformation of the right panel and the deformation of

the left panel. The averaged deformations were applied to the original geometry resulting in the new

geometry boundaries. Once the new outer and inner geometry was calculated, the connecting element

geometry was recalculated.

Potential Flow

Potential flow acts only on the outer boundary. There is no flow inside the cylinder. The potential

flow subroutine consists of an. outer loop on the number of nodes and an inner loop on the number of

elements. For each node the routine sets up Equation 15 and numerically integrates over all the elements.
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The functions w* and q* are defined as:

w= ( !)In(!) and q*= w  ( - (niri ) (54)

On the non-singular elements the integration was performed with a Gaussian quadrature:

N
ff(T)dn = (AD wi (55)

-1 i=l

where N is the order of the quadrature, Tri are the quadrature values and wi the quadrature weights. The order

of the quadrature used was determined by comparing the numerical integration results with analytical results

as the element end points were moved towards the comer. In this way it was found that a 12th order

quadrature was required to obtain accurate integrations for small values of S. This was also verified by

comparison of the diagonal terms of the H matrix as the quadrature order was increased. Because the

geometry was always smooth at the nodes, the diagonal term should be .5. A 12th order quadrature was

required to obtain .5 as the end nodes came very close to the comers (8 = .01). This high order is due to the

1/r term which causes r to become very small as the node is moved to the end of the panel.

The singular element integrations were performed with a different quadrature formula. The singular

terms of the H matrix (q* integral) vanish because the normal is perpendicular to the panel for flat panels

(Eq 34, 35). For the G matrix, a one-dimensional logarithmic Gaussian quadrature formula is used (3:449).

Because the formula is designed for an integral from 0 to 1 with the singularity at 0, the integral is broken

into two separate integrals:

[N(i)( I Gjdn f rl = f n r + j 1f( )ln) dn (56)
jF r r' rl

fo-o
f-f()ln)+ f f (1-2
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* where

- I- 7(r = 0) a1 -1(r=0) (57)
= -1 -T(r= 0) 1 -((r=0)

S is now defined as the location of the singularity on the panel (Tl(r=0)). On the singular element

r = IS-n I-L" - (58)
2

where Length is the length of the panel. Substituting Equation 58 into Equation 56 results in:

f ) In ( d(i= (59)

ff l-)ln (1 l+S) drl ff()ln IS h(1+S).5
r2

where

j= 211-1 and l = 2rl-1 (60)

Using Equation 59 the singular terms of the G matrix were calculated. Once the H and G matrices are

filled, the program calculates the diagonal terms of the H matrix using Equation 32, and the boundary

condition matrix q using no flow through the boundary (Equation 33).

Velocity and Pressure Field

The velocity and pressure subroutine is similar to the potential flow routine in that it performs an outer

loop on the number of nodes and an inner loop on the number of elements. The fundamental solutions are

now:
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CW* and ~w (61)
ax(x) 2 ir 2 y(x) 2 7 r2

and

*2 *2
= 1 r ni-(rini-rjnj)2ri and o 1 -r ni-rjnj)2rj(

ax(x) 2xt 4 ay(x) 2x 4r r

where the ri and rj terms are the components of r in the x and y direction. The non-singular integrals are

approximated by a 12th order Gaussian quadrature.

On the singular panels the following approximations are made (Figure 13):

r x_ -T, I nh (63)
S! 2

ri r - 1 rcoso0 and rj - r sin0 (64)

(x2,y2)

Integration Point T1

r.

Figure 13. Singular Panel Approximation Definitions
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Because r is always postive, a correction factor was required to place the correct sign on the r components.

The angle formed by the x-axis and the element is 0 and is calculated by:

Cos0= X 2 "X 1  and sinO- Y2-Y1 (65)
Length Length

where (x2,y2) are the coordinates of the right end of the panel, and (x1 ,yl ) are the coordinates for the left

end.

By using Equations 63, 64 and 65 Equation 61 reduces to a 1/r singularity term. A quadrature using

a numerical evaluation of Cauchy principal values (3:451) was used for the integrations.

f =71) d X f[(-l-S) 1 ii+ S]wi + f(S)In I-1S (66)
f ,(A - S)i=

. f[(1-S)Tni+ S]wi- f(S) lnI1- S

Equation 62 reduces to a 1/r2 singularity. From Reference 9 this can be approximated by a quadrature rule

using;

K "_ + 2 f11=0) (67)

f, 11 i it Th

Note that Equation 67 assumes that the singularity is in the center of the element. To use this the

singular element was divided into one segment center around the sigula-ity, and a second segment which

does not contain the singularity.

f(1 = 9 .5 (eWl- start) M + non-singular integral (68)

1 2

0
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where start = start of singular segment and end = end of singular segment. If the singular segment is from

-I to end, then the non-singular integr"_ -:,ill be:

non-singular integral = (- end) - (69)

If the singular segment is from start to 1, then the non-singular integral will be:

non-singular integral f ( .5 (start + 1) dn where il= 2  Tl+1) -1 (70)-2 " start + 1 !

The second integral may be solved using a normal Gaussian quadrature while the singular segment may use

Equation 67.

Both the boundary conditions and the potential are known at the nodal points. Equation 36 is solved

at each node in the x direction for the x-component of perturbation velocity and in the y direction for the

y-component of perturbation velocity. The total perturbation velocity is subtracted from the oncoming

flow velocity at each node to determine the final velocity at each node. The pressurc field on the cute"

surface is then calculated using Equations 40,41 and 42. By changing the density of the fluid, the user

may increase or decrease the magnitude of the pressure on the cylinder.

For the pressure field on the inner boundary the inner pressure was assumed constant, and was set

equal to a pressure on an outer node. This approximates the cylinder being vented to the outside. The node

could be chosen by the user, and was selected as a node on the back of the cylinder where the pressure

approached stagnation pressure. Once a vented node was specified, the pressure field on the inner boundary

was determined.
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Elastic aDfrations

The elastic deformations were determined in a nested three step process. The outer step is on the

subregions of the structure, the next step on the nodes around the subregion, and the innermost step on the

elements around the subregion. The fundamental equations, w* and q*, are given in Equations 44 and 45.

For the non-singular integrals the 12th order quadrature is used. For the singular integrals the equations are

reduced to ln(l/r) and (1/r) singularities whose quadrature forms have been previously discussed. As the

routine progresses around a subregion it places the terms of the H and G matrices into the global

numbering system rows and columns. When the routine has finished looping around all the subregions,

the matrices are entirely filled. This routine did not attempt to optimize the H and G matrices. If

optimization were to be performed, the matrices would be banded which would reduce the time required for

solution. The diagonal terms of the H matrix are calculated using Equation 50 and the unknown tractions

are moved to the left-hand side of the equation. The system of equations is then solved for the deformations

at the nodal points.

Solution of Linear Equations

The matrix system HU = Gq was sot, ed using a routine found in Reference 2 (2:67). The proper

execution of this routine was ve.died using IMSL routines. IMSL was not used because it requires

additional workspace. Because of the large systems of matrix equations used in the program, memory space

was a driving factor to the size of the problem solved.

Continuity Considerations

Because the end nodes of the potential and deformation functions were not on the end of the element,

the approximating functions were not constrained to be continuous from element to element. To force the

potential to be continuous between elements a continuity restriction could be enforced at the comers. At

each comer the function u computed using shape functions from the left element equalled the function

0
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computed using shape functions from the right element:

N1 (-1)u1 , +N2(-1)u 2 ,t +. +Nr(-l)Urit = N1(1)uI f+N2(1)U 2f+. +Nr(1)Urlf (71)

or

Nl(-1)u 1 t+N 2 (-l)u2 ,+... +Nr(-i)U1r t - NI(I)u1 f -N2(1)u 2 Yf-... -Nr(i)Urlf= 0 (72)

A row of the Hu = Gq system was replaced on each element by Equation 72. When solved, the new

system of equations produced continuous values of the function about the surface. In practice, the order of

the approximating function was increased to allow the same number of collocation points on the elements

as were used without the continuity restraint An alternative approach not used here would have been to

use a least squares solution by applying a single value decomposition solver. This approach would not

have ensured continuity, however, and was rejected in favor of the first approach.

Slope continuity would be desirable. However, since the geometry was modeled as straight line

segments the solutinn was expected to display singular behavior in the vicinity of the corners (8). This is

analogous to the stress concentrations expected at sharp corners in elastic solutions. If the geometry model

is forced to have continuous slope in the future, it would be desirable to enforce not only continuity of the

unknown but also continuity of its slope at the junction of the elements.

The notion of a least squares approach could be applied to higher order elements. This could replace

the existing linear terms satisfying the original geometric nodal data and the slope continuity requirement.

The new geometric nodal points could then be used to describe the boundary.

The potential, velocity and pressure field due to the original geometry are calculated the first pass

through the routine. The deformations caused by the pressure field (surface tractions) are determined, and

the average comer deformations are applied to the original geometry resulting in a deformed geometry.

A new potential, velocity and pressure field are calculated. Beginning with the second iteration the
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elastic structure is in a pre-stressed condition. If the total pressure field is used to calculate the

deformations, it would be equivalent to releasing the stresses in the structure after each iteration and

beginning from an initial condition. To model the pre-stressed condition the new surface tractions are

subtracted from the old tractions. This difference determines the tractions caused only by the deformations

from the previous iteration. The difference is then used to calculate the new deformations and new

geometry.

The program iterates in the above manner, calculating new ractions and deformations each iteration.

If the structure has adequate stiffness, the incremental deformations will approach zero, and a steady-state

condition will be obtained. If the stiffness is not adequate for the flow condition, the iterative process will

not reach a steady-state condition.

0

0
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V. Discussion and Results

The results of the research are presented as solutions of potential, velocity, coefficient of pressure

and deformation. Because the solution of potential flow about a cylinder is well known, the results of the

BEM potential flow are compared to theory to validate the potential flow code. Once the potential

solutions have been discussed, the results of the elastic deformations are discussed and are compared to

results from a FEM solution. Finally, ,he iteration of the fluid-structure problem is discussed.

Effect of Element Size on Solution

The structure could be modeled with 8 to 120 elements, and as the number of elements increased the

size of each element decreased. As the element size decreased, the geometry approached that of a cylinder.

Therefore, it would be expected that as the size of elements decreased the BEM solution for the velocity and

pressure would approach theoretical values about a cylinder.

The coefficient of pressure was the parameter chosen to discuss because it is the end result of the

potential and velocity calculations. Figures Al, A2 and A3 illustrate the effect of element size on the

solution of coefficient of pressure (Cp) for constant, linear and parabolic modeling of potential and

velocity. The solution is presented for 8 elements, 40 elements and 120 elements about the structure. The

angle around the cylinder, Theta (0), is measured from the front stagnation point in a clockwise direction

(Figure 14). The constant order approximation results in step function solutions, the linear approximation

as a linear solution from one end of the element to the other, and the parabolic approximation results in

parabolic behavior of the solution. The spikes in the parabolic solution are expected due to the

discontinuity of the geometry slope as discussed in Chapter 4 and in Reference 8. Note that as the element

size decreases, the amplitude of the spikes decreases also, although the ratio of element size to spike

amplitude increases. If the geometry was modeled with slope continuity, it would be expected that the

parabolic approximation solution spikes would smooth.
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Figure 14. Definition of Angle Around Cylinder

Effect of Approximation Order on Solution

The approximations are compared against each other for 8, 40 and 120 elements in Figures A3, A4

and A5. Higher order approximations than parabolic would also display singular behavior near the comers.

Effect of End Node Location on Solution

The effect of moving the end nodes towards the element comer are shown in Figures A7 and A8.

Parabolic approximating ordcr was used for this comparison. The location of the end nodes does appear to

effect the solution. As shown, moving the nodes closer to the comers causes the spiking behavior to

amplify. This is due to the ln(l/r) and 1/r singular behavior of the fundamental solutions which cause the
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integrals to increase towards infinity. Indeed, when the nodes were placed within 1 8 of the corners, the

solution quickly became invalid.

Comparison of Potential Flow Results With Theory

Linear approximations with 120 elements were chosen for the comparison of the BEM results with

theory. Figures A9 through A12 show comparisons of the potential flow velocities and Cp calculations.

For an fluid flow velocity of 1, theoretical values of Cp are 1 at the front and back stagnation points

(0 = 0, 180), and -3 as the flow acclerates around the top and bottom of the cylinder (0 = 90, 270). As

shown, the results of the code model the stagnation pressure well with any element size. The improvement

of the solution due to decreasing element size is most apparent at the top and bottom of the cylinder as the

solution converges towards theory. The largest error of the BEM appears at the top and bottom of the

structure and is on the order of 2.4% of Cp. Figure A13, which displays the comparison of BEM potential

with theory, shows th t the BEM results overlay those of theory.0
Effect of Number of Elements and ApMximation Order on Solution Time

The elastic deformations were calculated using 40 flat elements and a linear approximation of the

potential and deformation. Although 120 elements produced a slightly smoother pressure distribution than

40 elements, it also significantly increases the computer time required for solution. This is because a

(8xm) x (8xm) system of equations is solved to determine the deformation. For 40 elements with linear

modeling this produces a 640 x 640 system of equations which took approximately 40 minutes to execute

on the AFIT Interim Computer Capability (ICC) system. The ICC is an Elxsi 6400 superminicomputer

with the Berkeley 4.3 UNIX operating system. A 1920 x 1920 system of equations is prodih:ed for 120

elements with linear modeling. Due to this factor, it was felt that the solution with 40 elements was

adequate to show trends and results of the BEM code. For flat elements and linear approximation of

deformation, a larger number of elements would serve to slightly smooth the final results.

3
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SElastic Deformation Results

The density of the potential fluid was defined as that of water at standard day temperature (1.937

slugs/ft3 ). The structure was modeled with a Young's modulus of 1000, and a Poisson's ratio of 0.3.

These assignments were made so that the resulting deformations would be large and more apparent.

The x and y components of deformation about the outer boundary are shown in Figures A14 and

A15. The figures represent the structure being deformed inward on the front and back sides, and pulled

outward at the top and bottom (Figure 15). rhis outward pulling is caused by the accelerated flow

producing negative values of Cp, and therefore the pressure at the top and bottom is outward. The

deformation along the inner boundary, although not shown, was outward in all directions, nearly equally

opposing the outer boundary on the front and back and pushing outward in the same amount as the outer

boundary on the top and bottom (Figure 15). The inflections of the deformation curves are due to the

element bulging.

0

Figure 15. Direction of Deformations on the Structure
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Rigid-Body Constraint

Note that although the structure was not physically pinned, rigid-body movement is constrained and

the structure does not translate or rotate. There is zero deformation in the x direction at the top and bottom

restricting side-to-side movement, and zero deformation in the y direction at the sides retricting up and down

movement. This is due to the method of calculating the coefficient ci with consideration of rigid-body

movements. Effectively, by calculating the diagonal terms of the H matrix from a summation of the terms

on the row, the solution is constrained. Additional boundary conditions may be placed on the structure if

desired, and the system of equations treated accordingly.

Comparison With Finite Element Model

A finite element mesh was constructed with 40 linear elements. The internal pressure calculated

from the BEM potential flow code was distributed at all the internal nodes. Concentrated forces were placed

0 at the outer boundary nodes to represent the pressure distribution determined from the BEM solution.

Because the FEM nodes were at the comers of the elements, the BEM pressure was calculated at the

end points using shape functions and averaged between elements to determine the concentrated pressure

values at the comers.

The deformations from the FEM code are shown in Figures A16 and A17. The shape of the BEM

and FEM solutions are nearly identical, and although the magnitudes are different, they are consistent with

past experience of the FEM code used.

Iteration of Fluid/Structure Solutions

A linking geometry routine was written to apply the elastic deformations to the original structure

boundary, and then to recalculate the potential and structural solutions. Once the original geometry was

defined, no additional information was required from the user to iterate on the solutions. This factor is the

0
41



major advantage to a boundary element formulation over the domain formulations as discussed in this

reseaxtL

For the iterative results, 8 elements were used with linear approximation functions. The first

calculated x and y components of deformation are plotted in Figures A18 and A20. Results from the third

to the 9th iterations are shown in Figures A19 and A21. As shown, the magnitudes of the deformations

decrease with each interation, and have approached zero within 12 decimal places by the 9th iteration

thereby indicating a steady-state solution has been obtained.

0
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VI. Conclusions and Recommendations

The major objective of this investigation was to determine the application of the boundary element

technique to compute the incremental deformations of an elastic structure in fluid flow. The main

advantage to the boundary element formulation over finite differences or finite elements is that it can

numerically approximate both the fluid and elastic structure governing equations with a common definition

of the fluid/structure boundary.

Results obtained during the course of this research indicate the the BEM does have a favorable

application to the aeroelastic problem of fluid flow past an elastic body. While simplifying assumptions

have been made in the execution of this thesis, it could be seen that this method presents a user friendly

approach to the problem definition. The fact that once the original boundary is specified the user is not

required to continuously redefine the geometry would be a large advantage in using organizations such as

the 4950th Test Wing. Also, as implemented in this study, the user is able to use several different

approximating orders rather than be limited to one. This would allow better modeling of the solution as a

function of the problem to be solved.

As shown with the results from the program, the BEM can provide accurate results. The iterative

capability of the code was also verified. This capability should prove to be an improvement over current

computational techniques of the calculation of airloads and deformations in an aeroelastic system. While

the process did produce steady-state solutions, the stability of the BEM iterative formulation should be

more thoroughly researched. Stability criteria, such as that used in finite difference and finite element

codes, may become applicable.

The largest factor towards accurate implementation of the formulation is the approximation of the

boundary geometry. While presenting a simple method of implementation, discontinuous geometry slope

produces many undesirable results and the use of continuo,,s higher order geometry elements is highly

recommended for future researchers.

Several additional features could be added to increase the versitility of the code. For example;
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three-dimensional problems, adding wakes to properly solve for lifting body problems, and using

non-stead- problem implementation. The applicability of the FEM to aeroelastic problems would be

increased by each of these additions.
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Appendix A: Investigation Results
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Appendix B: Program Routines
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C
C FLUID - STRUCTURE INTERACTION USING BOUNDARY ELEMENT TECHNIQUE
C
C THESIS PROJECT
C NOBMA F TAYLO0R
C GAE-88O
C
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C
C M4AIN PROGRAM
C
C IFLAG - 1 PERFORM FLUID CALCULATIONS ONLY
C - OTHER ITERATE BETWEEN FLUID AND STRUCTURE
C PFLAG - 1 PRINT OUT POTENTIAL INFORMATION
C - 2 PRINT OUT STRUCTURAL INFORMATION
C - 3 PRINT OUT BOTH
C

implicit realS8 Ca-ho-:)
COMMON/FLAGS /I FLAG, PFLAG, ITER
COMMON/GEOMET/NNODESNELEMS,ORDER,EPS,NORMI,NORM4J,JACI NODEC,

*NODPIN1,NODPIN2,NODE(5) .ELEM(360,4)
COMMON/POTEN/VINF,ALPHA,VI,VJ,PINF, RHOINF,GAMMA,M114F2,NODEP
COMMON/FLOW/H (240 ,240 ),G( 240. 240) ,QC 240) ,GHAT C240)
COMMON/STRUCT/GE .XNU,HS( C19201 1920) ,GS (192 0, 1440) ,GSHAT(C192 0
COMMON/POSITION/XI (1080) ,YI (1080)
C0OMMON/VELOCIT/UVELC24O ) VVEL(240) ,XFORC(48 ) ,YFORC(480),
*XOLDC480) .YOLD(480)

REAL*8 NODE,GAMMA,MINF2,NORMI,NORMJ,JAC
INTEGER ORDER, PFLAG

C
C
C

READ(5,1) IFLAG,PFIAG
1 FOI@KAT(2I1)

MEDC5,2) ITERATE
2 FORMAT(12)

C
IFCIFLAG.EQ.1) THEN

C
C PERFORM FLUID CALCULATIONS ONLY
C
C READ IN GEOMETRY AND FLUID INFORMATION
C FORM H(PHI)-GHAT SYSTEM
C SOLVE FOR PHI
C CALCULATE PRESSURES (XFORCI YFORC)
C

CALL GEOMIN
CALL GOUT PUT(CITER)
CALL FLUIDIN
CALL FFORK
CALL QFLOW5 DO 5 Iinl,NNODES
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1MAIN 2/3

GHAT(I )-0.0
DO 5 J-1,NNODES

GHAT(I )-GHAT(I )+G(I,J)*Q(J)

5 CONTINUE

CALL HDIAG

IF(PFLAG.EQ. 1.OR.PFLAG.EQ.3) CALL HGQOUT

CALL SOLVE(G,GHATD,NNODES,240)

C
C NOTE THAT AFTER GOING THROUGH SOLVE GHAT IS THE SOLUTION PHI

C
CALL VELOC

CALL PRESSURE

CALL FLOWOUT
CALL DRAW( ITERATE)

ELSE

C
C CALCULATE BOTH FLUID AND STRUCTURAL INFORMATION

C AND ITERATE UNTIL STEADY STATE SOLUTION IS REACHED

C
C READ IN GEOMETRY, FLUID AND STRUCTURAL INFORMATION
C CALCULATE H ( PHI )GHAT SYSTEM
C SOLVE FOR PHI

C CALCULATE SURFACE PRESSURES
C CALCULATE HS(U)-GSHAT SYSTEM

C SOLVE FOR DEFORMATIONS U
C CALCULATE NEW GEOMETRY

C ITERATE
C

ITER-0

CALL GECHIN
CALL GOUTPUT ( ITER)

CALL FLUI DIN
CALL SINFO

100 CALL FFORK

CALL QFLOW
DO 105 I-1,NNODES

GHAT(I )-0. 0
DO 105 J,1,NNODES

GHAT(I )GHAT(I )+G(IJ)*Q(J)
105 CONTINUE

CALL HDIAG
IF(PFLAG.EQ.1.OR.PFLAG.EQ.3) CALL HGQOUT

CALL SOLVE(H,GHAT,D,NNODES,240)
C
C NOTE THAT AFTER GOING THROUGH SOLVE GHAT IS REALLY THE SOLUTION PHI

C

CALL VELOC
CALL PRESSURE

CALL FLOWOUT

CALL SFORM
CALL HSDIAG
CALL GSKATIT
IF(PFLAG.EQ.2.OR.PFLAG.EQ.3) CALL SOUT

CALL SOLVE(HSGSHAT,D,NNODES*8, 1920)
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MAIN 3/3
C
C NOTE THAT AFTER SOLVES GSHAT IS REALLY THE DEFORMATION U

C
CALL SOUTPUT ( ITER)

ITER-ITER+ 1

CALL DRAW(ITER)
CALL DEFENDS
CALL GOUTPUT(ITER)
IF(ITER.LT.ITERATE) GO TO 100

ENDIF
150 CONTINUE

END
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

C DEFENDS
C
C THIS ROUTINE CALCULATES THE DEFOW~ATIONS AT THE ENDS OF THE ELEMENTS
C AND DETERMINES THE NEW ELEMENT COORDINATES
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE DEFENDS
IMPLICIT REAL*8 (A-H,O-Z)
COMON/GEOM4ET/NNODES,NELEMS,ORDER,EPS,NORMI ,NORMJ,JAC,NODEC,

-NODPINI,NODPIN2,NODE(5) ,ELEM(360,4)

COMMON/STRU)CT/GE,XNU,HS( 1920. 1920) .GS (1920,1440) ,GSHAT( 1920)

COMMN/POSITION/XI (1090) ,YI (1090)
REAL-8 NODE,NORtMI,NORMJ,JAC,SHAP(5),SHP(5)

INTEGER ORDER

C
C CALCULATE THE X AND Y DEFORM4ATION OF THE LEFT END OF ELEMENT J
C BY AVERAGING THE DEFOF44ATION AT ETA--I E ,EMENT J AND
C ETA-i ELEMENT J-1

C

DO 20 J-1,2*NELEMS
UXL0. 0

UXR-0.0

UYL-0.0

UYR-0.O

CALL SHAPE CORDER, -1.DOSHAP)

CALL SHAPE(ORDER, 1.D0,SHP)

DO 10 L-1,ORDER

JL-J 'ORDER- (ORDER-L)
JR-(J-1 )*ORDER-(ORDER-L)
IF(J.3Q. 1) JRinNELEMS*ORDER-(ORDER-L)

IF(J.EQ.NELEMS+1) JR-2-NELEMS-ORDER-(ORDER-L)

UXaL(JXL+SHAP (L)*GSHAT(CJL)
UXR-UXR+SHP(L )GSHAT(JR)

UYL-UYL+SHAP (L) 'GSHAT ( 4NNODES+JL)
UYR-UYR+SHP(L) *GSHAT(4*N14ODES+JR)

10 CONTINUE
ELEM4(J, 1)-ELEM (J, I)+ (UXL+UXR) /2.

ELEM(J,2 )-ELEM(J,2)+(UYL+UYR)/2.

20 CONTINUE

C

C CALCULATE THE RIGHT ENDS OF THE ELEMENTS BASED ON THEM
C EQUALING THE LEFT ENDS OF THE J+1 ELEMENT
C

DO 30 J-1,2*NELEMS

IF(J.EQ.NELEMS) THEN

ELEM(J,3)-ELEM( 1,1)

ELEM(J,4)-ELEM( 1,2)
ELSE

IF(J.EQ.2-NELEMS) THEN
ELEM(J,3)-ELEM(NELEM4S+i,1)

ELEM(J,4)-ELEM(NELEMS+1 ,2)
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L'iFENDS 2/2
ELSE

ELE&(J, 3)-ELEI(J+1, 1)

ELEN(J,4 )-ELEI4(J+1.2)

END IF

END IF

30 CONTINUE

C

C CALCULATE THE CONNECTING ELEMENT END POINTS
C

DO 40 I-1,NELEMS

ELEM(2*NELEMS+I, 1)-ELEM(I,3)

ELEM(2*NELEMS.I,2 )-ELEM(I,4)
ELEM( 2NELEMSiI, 3)-ELEM(NELEMS+I ,3)

ELEM(2*NELAMS+I,4 )-ELEM(NELEMS+I,4)
40 CONTINUE

C
C CALCULATE THE NEW COORDINATES OF THE NODAL POINTS

C
DO 50 I-1,NELEMS*3

DO 50 L-1,ORDER
ETAA-1l.

ETAC-1.

ETAQ-NODE (L)

SHAP 1 =(ETAQ-ETAC) / (ETAA-ETAC)
SHAP2-(ETAQ-ETAA) /(ETAC-ETAA)
XI(IORDER-(ORDER-L))-S{AP1*ELEM(I,1)+SHAP2*ELEM.(I,3)

YI(I*ORDER-(ORDER-L))SHAP1*ELEM(I,2)+SHAP2*ELLMtCI,4)
50 CONTINUE

RETURN
END
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C

C FFOR14

C
C THIS SUBROUTrINE COMPUTES THE H AND G MATRICES FOR THE
C POTENTIAL FLOW
C
C H MATRIX - INTEGRAL(SHAPE*QSTAR*JAC)DETA

C
C G MATRIX - INTEGRAL(SHAPE'PHISTAR*JAC)DETA

C

SUBROUTINE FFOR4
implicit realB8 (a-h,o-z)

COM14ON/POSITION/XI (1080) ,YI (1080)
COMMON/GEOI4ET/NNODESNELEMS, ORDER. EPS, NORMI ,NORMJ, JAC, NODEC,
*NODPIN 1, NODPIN2, NODE( 5) ,ELEM( 360,4)

COKMON/FLOW/H(240, 240) ,G(240, 240) ,Q(240) ,GHAT(240)
real'S ETA(12),WT(12),ZTALN(10),WTLN(10),ETA2(10),WT2( 10)
real*8 SHAP(5 ),SHPLN2(5),SHPLN(S) ,SHAP3(5)
real'8 NODE, JAC,3JACLN, JACLN2, AC 3, AC4, NORI, NOF04J
INTEGER ORDER

C
C ETA AND WT ARE NORMAL 12TH ORDER GAUSSIAN QUADRATURE
C VALUES AND WEIGHTS
C

DATA ETA(l1),ETA(2),ETA(3),ETAC4),ETA(5),ETA(6),ETA(7),

-ETA(8),ETA(9),ETA(10),ETA(11),ETA(12)/-.98156063d0,-.90411726d0.

*-.76990267d0,-.58731795d0,-.36783149d0,-.1252334ld0,
'.1252334ld0,36783149d0,58731795d0,76990267d0,941726dO,

*.98156063d0/

DATA WT(1 ),WT(2),WT(3),WT(4),WT(5),WT(6),WT(7),WT(8),
*WT(9) ,wr(10) ,WT C11,.WT( 12 )/. 04717534d0, .10693933d0,. 16007833d0,
-. 20316743d0. .23349254d0, .24914705d0, .24914705d0, .23349254dO,
-.203 16743 dO ,.1600 7833d0 ,.1069393 3d0,. 04717 534d0/

C
C ETALN AND WTLN ARE 10TH ORDER LOGARITHMIC GAUSSIAN QUADRATURE
C VALUES AND WEIGHTS

C
DATA ETALN(1) ,ETALN(2 ),ETALN(3) ,ETALN(4) ,ETALN(S ),ETALN(6),
*ETALN(7),ETALNC8),ETALN(9),ETALN(10)/.00904259d0,.05397105d0,

*.13531134d0,.24705169dO,.3802117ld0,.52379159do,.66577472do,
-. 79419019d0, .89816102d0, .96884798d0/
DATA WTLN(1 ),WrLN(2),WrLw(3),WrLN(4),W'rLN(),WTL(6),WTLN(7),

*WTLN(8) ,WTLN(9) ,WTI&4( 10)/. 12095474d0, .186363l0d0,. 19566066d0,
*.17357723d0, .13569597d0, .093647C84d0, .055787938d0* .027159893d0,
-. 0095151992d0. .0016381586d0/

C
C ETA2 AND WT2 ARE 10TH ORDER GAUSSIAN QUADRATURE
C VALUES AND WEIGHTS
C

DATA ETA2(l1),ETA2(2),ETA2(3),ETA2(4),ETA2(5),ETA2(6),rrA2(7),
*ETA2(8),ETA2(9',ETA2(10)/-97390653d,-.86506337d0,-67940957d0,
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FFORM 2/4
'-.43339539d0,-.14887434d0, .14887434d0, .43339539d0, .67940957d0,
.86506337d0,. 97390653d0/
DATA WT2(1),WT2(2),WT2(3),WT2(4),WT2(5),WT2(6),WT2(7),WT2(8),
*WT2(9),WT2(10)/.06667134d0..14945135d0,.21908636d0,.26926672d0,
•.29552422d0, .29552422d0, .26926672d0, .21908636d0, .14945135d0,
'.06667134d0/
DATA PI/3. 14159265d0/

C
C INITIALIZE MATRICES
C

DO 10 I-I,NNODES
DO 10 J-1,NNODES

G(I,J)-O.O
H(I,J)"0.0

10 CONTINUE

C
C BEGIN LOOPS ON NODE I AND ELEMENT J

C FOR EACH I ROW, PERFORM INTEGRATIONS OVER EACH ELEMENT J
C AROUND THE STRUCTURE. FILL IN ONE ROW AT A TIME
C

DO 1000 I-1,NNODES
. DO 1000 J-1,NELEMS

C

C DETERMINE IF THE INTEGRATION SHOULD BE SINGULAR
C I.E. IS THE NODE I SO4EWHERE ON THE ELEMENT?
C ISING - 0 MEANS NODE I IS NOT ON ELEMENT J
C ISING - 1 MEANS NODE I IS FIRST NODE ON ELEMENT J
C ISING - 2 MEANS NODE I IS SECOND NODE ON ELEMENT J
C ISING - 3 ETC
C

ISING-0
DO 20 L-T,ORDER

NODES-J*ORDER- (ORDER-L)

IF(IoEQ.NODES) ISING-L

20 CONTINUE

IF(ISING.EQ.0) THEN
C * * * * * * * * * * * * * 0 * * * * * * 0 * * * * *

C THE INTEGRATION IS NOT SINGULAR
C PERFORM 12TH ORDER GAUSSIAN QUADRATURE
C 0 

e * *** 00 *** * *0** * 0 * *000 * * * 00 *

DO 50 K-1,12
C
C CALCULATE THE A A4D Y COORDINATES OF THE QUADRATURE POINT

C AND CALCULATE DISTANCE FROM NODE I TO QUAD POINT

C
C CALCULATE SHAPE FUNCTIONS AT QUAD PO1.T (ETA(K)) BASED ON GEOMETRY

C NODES AT -1,0,1

C

ETAA- 1.

ETAC1.
ETAQ-ETA (K)
SHAP( 1 )-(ETAQ-ETAC)/(ETAA-ETAC)

SHAP(2 )-(ETAQ-ETAA)/(ETAC-ETAA)

X-SHAP(1)ELEM(J, 1)+SHAP(2)*ELEM(J,3)
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FFORM 3/4
Y-ShAP(1)*ELEq(J,2)+SHAP(2)ELL!A,(J,4)
RI-XI(I )-X
RJ-YI(I )-Y
R-SQRT(RIRIIRJRJ)

C
C CALCULATE PHI- AND Q*
C

CALL JACOBIAN(JEZTA(K))
PHISTAR-dlog( 1/R)
D-RI*(NOMiI )+RJ*(NORMJ)
QSTAR-(D/(R*R))

C
C CALCULATE TERMS OF H AND G MATRICES
C ROW CORRESPONDS TO NODE I
C COLUMN CORRESPONDS TO GLOBAL NUMBER OF ELEMENT NODES
C

CALL SHAPE (ORDER, ETA (K), SHAP)
DO 35 L-1,ORDER

C
C JJ IS GLOBAL NUMBER OF ELEMENT NODES
C FOR EXAMPLE; NODES 1,2,3 ON ELEMENT 1 ARE 1,2#3
C NODES 1,2,3 ON ELEMENT 2 ARE 4,5,6
C NODES 1,2,3 ON ELEMENT 3 ARE 7.8,9

C

JJ-J'ORDER-(ORDER-L)
G(I,JJ)-G(I,JJ)4*SHAP(L)*PHISTAR-JAC*Wr(K)/(2.*PI)

H(I,JJ)-H(I,JJ)+SHAP(L)*QSTAR-JAC-WT(X)/(2.*Pl)

C0 CONTINUE . .. ~.*
C

C THE INTEGRAL IS SINGULAR IN THE INSIDES OF ELEMENT J
C
C DETERMINE THE ETA BAR LOCATION OF SINGULARITY
C

SINGUL-NODE(ISING)
C
C CALCULATE TERMS OF G MATRIX
C
C

X2XI-ELEM(J,3)-ELEM(J. 1)
Y2YI-ELEM(J,4 )-ELEM(J,2)
PLENG-SQRT (XK2K l*X2K +Y2Y *Y 2Y 1)

Do 350 K-1l,10
ZT-SINGUL+O .-SINGL)*ETALN(K)
CALL SHAPE(ORDER,ET,SHPLN2)
CALL 3ACOBIAN(J,ET)

JACZ2JAC

ET-SINGUL+.5(.-SINGJL)-(ETA2(K)+1.)
CALL SHAPE(ORDER,ET,SHAP)
CALL JACOBIAN(J,ET)

JAC4-JAC

ST-SINGUL-(SIV.GUL+1. ) ETALN(K)
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FFORM 4/4
CALL SHAPE(ORDER,ETSRPLN)

CALL JACOSIAN(J,ZT)
JACLN-JAC
ET-SINGUL-.5'( 1.+SINGUL)*(ETA2(K)+1.)

CALL SHAPEfORDIR, IT, SHAP3)

CALL JACOBIAN(JET)
JAC3-JAC
DO 385 L1.,ORDER

JJnJ*ORDER- (ORDER-L)
TERMI-SHPLN(L)JACLN(SINGUL+.)WTLN(K)/(2.*PI)

TER43-SHAP3 (L) *JAC3-
dlog(PLENG*ABS(1.+SINGUL)/2.)*(SINGUL+1.)

* *.5*I.T2(K)/(2.*PI)

TERM2-SHPLN2(L)*JACLN2(.-SINGUL)WTL(K)/(2.*PI)
TEP.M4-SHAP(L) '3AC4*

dlog(PLENG*ABS(SINGUL-1.)/2.)C1l.-SINGUL)
* *.5*WT2(K)/C2.*PI)

G(I,JJ)-G(I,JJI-TERMI4'rERM2-'rERM3-TkRM4
385 CONTINUE
350 CONTINUE

END IF
1000 CONTINUE

RETURN
END
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C THIS SUBROUT~INE OUTPUTS THE POTENTIAL FLUID INFORMATOINS
C

SUBROUTINE FLOWOt7T
implicit real*8 (a-h,o-z)
COMMON/GEOMET/NNODES, NELEMS,ORDER,EPS, NORMI *NORMJ, JAC, NODEC,
*NODPIN1,NODPIN2,NODEC5) ,ELEM(360,4)

COMMON/FLOW/H( 240 ,240 ) G240, 240 ) , 240 ),GHAT( 240)
COtMN/POTEN/VINFALPHA,VI,VJ, PINF,RHOINF,GAI4MA,MINF2,NODEP

COMMON/VELOCIT/UVEL(240),VVEL(240),XFORC(480),YFORC(480),
*XOLD(4B0) ,YOLD(480)

REAL*8 NORMI ,NORMJ,JAC,NODE,GAMMA,MINF2

INTEGER ORDER
C

C

WRITE(b,l) VINF,ALPHA,V1,VJ,MINF2**.5

I FORMAT(//,22X,'"'** FLOW INFORMATION *****,/,24X,
* * ON OUTER BOUNDARY **,/#1OX#'Vinfinity - ,F1O.4,

" 5X,'ALPHA - ',F1O.4,/,5X,'VI - 1,FIO.4,1OX,'VJ -',F1O.4,
" 1OX,'MINF - ',FIO.4,//)

WRITE(6,2)
2 FORMAT (IX, 'POTENTIAL, 3X,#U VEL',SX,'V VEL',4X,'VELOCITY',

-5X,ICP-,6X,'X FOCEI,3X,'Y FORE',//)
DO 5 Iin1,NNODES

VEL-SQRT(UVEL(I )*2+VVEL(I )*2)

CP-1.-(VEL/VINF)**2
WRITE(6,3) GHAT(I),UVEL(I),VVEL(IbVEL,CPXFORC(I),YFORC(I)

3 FORKAT(7F10.4)
5 CONTINUE

C

C WRITE FORCE ON INSIDES

C

VgLVENT-SQRT(UVEL(NODEP )**2+VVEL(NODEP )*2)
CPVENT- 1.- (VELVENT/VINF)' '2

PVENT-. 5*RHOINF*VINF*VINF'CPVENT

WRITE(6,F, PVENT,NODEP

6 FORMAT(//,22X,""'* FORCES ON INNER SURFACE**0I

-/,lOX,$INNER PRESSURE IS - 1,F1O.4,/,
*I0X,'VENTED NODE IS = p3o/

WRITE(6,7)
7 FORMATC2X,IX FORCE',3X,'Y FORCE',/!)

WRITE(6,8) (XFORC(I ),YFORC(I ),I-NNODES+1,2*NNODES)
8 FORMAT(2F10.4)

RETURN

END
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C
C FLUIDIN
C
C THIS SUBROUTINE READS IN THE INFORMATION REQUIRED TO

C CALCULATE THE POTENTIAL FLUID DATA
C
C INPUT:

C VINF - FLOW VELOCITY AT INFINITY
C ALPHA - FLOW ANGLE OF ATTACK
C PINF - PRESSURE AT INFINITY
C RHOINF - DENSITY AT INFINITY

C GAMMA - GAMMA
C NODEP - NODE AT WHICH TO VENT PRESSURE TO INSIDE
C
C OUTPUT:

C VI - X-COMPONENT OF FLOW VELOCITY

C VJ - Y-COMPONENT OF FLOW VELOCITY
C MINF2 - MACH AT INFINITY SQUARED

C

SUBROUTINE FLUIDIN
implicit real*8 (a-h,o-z)

COMMON/POTEN/VINF, ALPHA,VIVJ,PINF,RHOINF,GANMA,MINF2,NODEP
real*8 GAMMA,MINF2

c
C READ IN Vinfinity AND ANGLE OF ATTACK
C CONVERT Vinf TO X AND Y (I AND J) COMPONENTS
C

READ(5,*) VINF,ALPHA
1 FORMAT(2F10.4)

ALF-ALPHA * 0.17453293

VI-VINF*COS(ALF)
VJ-VINFSIN (ALF)

C

C READ IN Pinfinity, RHOinfinity and GAMMA

C
READ(5,-) PINF,RHOINF,GAMMA

2 FORMAT(3F10.4)
MINF2-(VINF*VINF*RHOINF)/(GAM.A*PINF)

C
C READ IN NODE AT WHICH TO VENT PRESSURE TO INSIDE

C
READ(5,*) NODEP

3 FORMAT(12)

RETURN

END
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C
C GEOMIN
C
C THIS SUBROUTINE READS IN THE GEOMETRY INFORMATION

C OF THE STRUCTURE
C
C INPUT:

C ORDER - ORDER OF POTENTIAL AND Q MODELING

C NELEMS - NUMBER OF ELEMENTS ALONG OUTSIDE OF STRUCTURE
C TOTAL NUMBER OF ELEMENTS IS 2*NELEM BECAUSE SAME NUMBER
C ALONG INSIDE OF STRUCTURE
C EPS - DISTANCE FROM END OF ELEMENT TO THE END NODES
C NODEC - NODE TO BE REPLACED BY CONTINUITY
C NODPINI,NODPIN2 - NODES TO BE PINNED
C
C OUTPUT:

C ORDER - NUMBER OF NODES ON EACH ELEMENT
C NNODES - NUMBER OF NODES
C NODE(I) - ETA POSITION OF NODE I WITHIN EACH ELEMENT

C XI,YI - X,Y LOCATION OF NODE I

C

SUBROUTINE GEOMIN

implicit real*8 (a-h,o-z)
COMMON/GEOMET/NNODES,NELEMS,ORDER,EPS, NORMI,NORMJ,JAC, NODEC,
*NODPIN 1,NODPIN2, NODE (5), ELEM(360,4)

COMMON/POSITION/XI (1080),YI(1080)

real'8 NORMI,NORMJ,JAC,NODE
INTEGER ORDER

DATA PI/3.14159265d0/

C
C READ IN ORDER OF FIT AND NUMBER OF ELEMENTS ALONG OUTSIDE SURFACE
C

READ(5,*) IORDER,NELEMS

ORDER-IORDER+ 1

NNODES=ORDER*NELEMS

C
C CALL SURFACE GEOMETRY GENERATION TO GET LEFT AND RIGHT

C X,Y LOCATIONS OF OUTSIDE AND INSIDE PANELS

C
CALL SURF

C
C DETERMINE LEFT AND RIGHT X,Y OF LINKING PANELS

C LINK OUTSIDE BOUNDARY WITH INSIDE

C
DO 10 I-1,NELEMS

ELEM(2*NELEMS+I, 1 )-ELEM(I,3)

ELEM(2*NELEMS+I,2 )-ELEM(1,4)
ELEM(2*NELEMS+I, 3 )-ELEM(NELEMS+I, 3)
ELEM(2*NELEMS+I,4 )-ELEM(NELEMS+I,4)

10 CONTINUE

* C
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GEOMIN 2/2

C READ IN DISTANCE OF END NODES TO ELEMENT CORNERS

C
READ(5,*) EPS

IF(ORDER.EQ.1) EPS-1.

C
C CALCULATE THE ETA POSITION OF THE NODES WITHIN THE ELEMENT

C NODE(M) AND NODE(ORDER) ARE EPS FROM +/- 1. OTHER NODES
C ARE SPACED EQUALLY WITHIN THE REMAINING SPACE
C

IF(ORDER.EQ.1) THEN

NODE( 1)-o.
ELSE

SPACE-(2.-2.*EPS)/(ORDER-1.)
NODE(1)--(1.-EPS)

NODE (ORDER)=-NODE( 1)

IF(ORDER.GT.2) THEN

DO 20 I-2,ORDER-1
NODE(I)-NODE(I-I)+SPACE

20 CONTINUE
END IF

END IF

C
C CALCULATE THE X,Y POSITION OF EACH NODE

C
DO 40 I-INELEMS*3

DO 40 L-IORDER

ETAA-1.
ETAC-I.
9TAQ-NODE(L)
SHAPI-(ETAQ-ETAC)/( ETAA-ETAC)

SHAP2- ( ETAQ-ETAA ) / ( ETAC-ETAA)
XI(I*ORDER-(ORDER-L))inSHAP1*ELEM(I,I)+SHAP2*ELEM(I,3)

YI(I*ORDER-(ORDER-L))=SHAP1*ELEM(I,2)+SHAP2*EL EM(I,4)

40 CONTINUE

C
C READ IN THE NODE OF EACH ELEMENT TO BE REPLACED BY THE
C CONTINUITY EQUATION
C

READ(5,*) NODEC

C
C READ IN NODES TO BE PINNED

C
READ(5,*) NODPINI,NODPIN2
RETURN
END
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C
C GOUTFUT
C
C THIS SUBROUTINE OUTPUTS THE ELEMENT GEOMETRY COORDINATES

C

SUBROUTINE GOUTPLUr(ITER)

implicit real*8 (a-h,o-z)
CO#MON/GEOMET/NNODES,NELEMS,ORDER,EPSNORMINORMJ,JAC, NODEC,

*NODPINI,NODPIN2,NODE(5) ,ELEM(360,4)

COMI4ON/POSITION/XI( 1080),YI ( 080)

real*8 NORMI,NORMXJJAC,NODE
INTEGER ORDER

C

C
WRITE(6, 10) NELEMS,3*NELEMS,ORDER,NNODES,3*NNODES,EPS,ITER-1

10 FOIM4AT(//,22X, S***-*GE14TRY INFORMATION""",//,

*IOX,'NMBER OF ELEMENTS ON OUTSIDE - ',13,
*10X,'TOTAL NUMBER OF ELEMENTS - 1,13,

*/,1OX,'ORDER OF MODELING - 1,13,

*/,10X, 'NUMBER OF NODES ALONG OUTSIDE - ',13,
*I0X,'TOTAL NUMBER OF NODES - ',13,

-/,1OX, 'DISTANCE FROM END NODES,,
*' TO CORNER - 1,F1O.4,/,,10X,' ITERATION NUMBER - ',12,/)
WRITE(6,20)

20 FORMAT(//,5X,-ELEMENT COORD)INATES',/,6X,'ELEMENTI,7X,'X-LEFT',

-7X, 'Y-LEFT .6X. 'X-RIGHT' ,6X, 'Y-RIGHT' .1/)
DO 30 1-1,NELEMj*2

WRITE(6,25) I,ELEM(I, 1) ,ELEM(1,2) ,ELEM(I,3),ELEM(I,4)

25 FORI4AT(9X,I3,5X,F10.4,3C3XF10.4))

30 CONTINUE

RETURN

END
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C GSHATT
C

C THIS SUBROUTINE MOVES THE CONNECTING ELEMENT TERMS OF THE GS
C MATRIX OVER TO THE HS MATRIX AND THEN CALCULATES GSHAT
C

SUBROUTINE GSHATT
implicit real*8 (a-h,o-z)

COMMON/GEOMET/NNODES,NELEMSORDER, EPS,NORMI,NORMJ, JACNODEC,

*NODPIN1,NODPIN2,NODE(5),ELEM(360,4)

COMMON/VELOCIT/UVEL(240),VVEL(240),XFORC(480),YFORC(480),
*XOLD(480 3 ,YOLD(480)
COMMON/STRUCT/GE,XNU,HS(1920, 1920),GS(1920, 1440),GSHAT(1920)

INTEGER ORDER
REAL*8 NODE,NORMINORMJ,JAC

C
C MOVE THE CONNECTING ELEMENT TERMS OF THE GS MATRIX OVER TO

C THE HS MATRIX

C
DO 10 1-1,8*NNODES

DO 10 J-1,NNODES
HS (I, 3NNODES+J )-GS (I,2*NNODES+J)

HS(I,7*NNODES+J)"-GS(I,5*NNODES+J)

10 CONTINUE

C

C CALCULATE THE GSHAT MATRIX

C REMEMBER THE COLUMNS OF GS CORRESPONDING TO THE CONNECTING
C ELEMENTS DO NOT COUNT
C
C SUBTRACT OLD TRACTIONS (XOLD,YOLD) FROM NEW TRACTIONS (XFORC,YFORC)

C THIS PRE-STRESSES THE STRUCTURE TO ACCOUNT FROM THE DEFO4ATION AND
C STRESS DUE TO THE LAST PASS
C

DO 20 I-1,8*NNODES

GSHAT(I )-O.0
DO 20 J-1,2*NNODES

GSHAT(I)-GSHAT(I)+GS(IJ)*(X.vRC(J)-XOLD(J))+

t GS(I,3*NNODES+J)*(YFORC(J)-YOLD(J))

20 CONTINUE

RETURN

END
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C
C HDXAG
C
C TIS SUBROUTrINE CALCULATES THE DIAGONAL TERMS OF THE H MATRIX
C

SUBROUTINE HDIAG
implicit real*8 (a-hgo-z)
COMMON/EOMET/NNODESNELEMS,ORDER, EPS,NORMI,NOR4JJAC, NODEC,

*NODPIN 1,NODPIN2,NODE(5) ,ELEM(360,4)

COMI4ON/FLOW/H(240,240),G(240.,240),Q(240),GHAT(240)

integer order
real*8 JAC,NORMI,NORMJNODE

C
C EXTERNAL FLOW (UNBOUNDED INFINITE DOMAIN)

C HIIin-SUM(HIJ)+1

C

DO 10 Iinl,NNODES
SUMO0.0
DO 3 J-1,NNODES

IF(I.NE.J) SUM - SUM+H(I,J)

3 CONTINUE

HCI,I)-(-SUM+1.)

10 CONTINUE

RETURN

END
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C

C HGQOLTI
C

C THIS SUBROUTYINE OUTYPUTS THE POTENTIAL FL40W MATRICES

C H, G, QGHAT
C

SUBROUTINE HGQOtIT
implicit real'8 (a-h,o-z)
COMMON/GEOtIET/NNODES, NELENS, ORDER, EPS,*NORM INORMJ,JAC, NODEC,
*NODP±&.N.ODPIN2,NODE(5) ,ELEM(360,4)
COMMON/FLOW/H(240,240),G(240,240),Q(240),GHAT(240)
real'S NO1RI, NOR4J, JAC, NODE
INTEGER ORDER

C
C

WRITE(6, 1)
I FORMAT(//,22X,'*'**POTENTIAL FLOW MATRICES**-*,/,

22X,"* FOR OUTER SURFACE BOUNDARY"'/)

WRITE(6,2)
2 FOJRAT(X@H MATRIX#,/)

DO 10 I-1,NNOOES
WRITE(6,3) (H(I,J) ,J-1,NNODES)

3 FORMAT(/13(8(F1O.4,5X),/))010 CONTINUE
WRITE(6, 11)

11 FORIIAT(//,5X,'G MIATRIX#,/)

DO 20 I-1,NNODES

WRITE(6, 12) (G(I,J),J1,NNODES)
12 FORAT(/13(8(F1.4,5X),/))

20 CONTINUE
WRITE6,21)

21 FORMAT(//,5X,'Q MATRIX$,/)

WRITE(6,22) (Q(I),11I,NNODES)
22 FORMAT(13(6(F10.4,5X),/))

WRITE (6. 31)

31 FORMAT(//,5XGHAT MATRIX4,/)

WRITE(6,32) (GHAT(I),I-1,NNODES)
)2 FORMAT(13(8(F10.4,5X),/))

RETURN

END
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C
C HSDIAG
C
C THIS SUBROUTINE CALCULATES THE DIAGONAL TERM OF THE HS MATRIX

C
C HII - -SUM(HIJ)
C

C FOR THE HXX AND HYY TERMS ONLY BECAUSE CXY-CYXO0. AND THEREFORE
C THE DIAGONAL TERMS OF HXY AND HYX ARE EQUAL TO THEMSELVES
C

SUBROUTINE HSDIAG
implicit real*8 (a-h,o-z)

CO1MrON/GEOMET/NNZDES,NELEMSORDER,EPS,NIORM1,NORMJ,JAC,NODEC,
*NODPIN 1, NODPIN2, NODE (5) ,ELEM( 360,4)

COMMON/STRUCT/GE,XNU,HS( 1920,1920) ,GS( 1920, 1440) ,GSHAT( 1920)

real'8 NORMI,NOR.MJ,JAC,NODE
INTEGER ORDER

C

C SUM FOR THE OUTER, INNER AND CONNECTING ROWS

C

DO 10 I-1,3NNODES

SUMXX0. 0
SUMYYO.')
DO 5 J-1,3NNODES

IF(I.NE.J) THEN

SUMXX-SUMKX+HS( 1,3)
SUMYY-SUMYY4HS(4*NNODES+I,4*NNODES+J)

END IF

5 CONTINUE
HS (1,1)=-SUMXX
HS(4*NINODES+I ,4*NNODES+I )--SUMYY

10 CONTINUE

C
C CONTINUE TO SUM FOR THE ADDITIONAL SET 00 CONNECTING ROWS
C

DO 20 1-3*NNODES+1,4*NNODES

II-I -NNODES
SUMXX-0.0
SUMYY0. 0

DO 15 3-1,3*NNODES

IF(II.NE.J) THEN
SUMXX-SUMXX+HS (I, 3)

SUMYY-SUMYY+HS(4*NNODES+I ,4*NNODES+J)
END IF

15 CONTINUE
HS( 1,11)--SUMXX

HS(4*NNODES+I ,A*N4NQD5Sfl )=-SIJMYY

20 CONTINUE

RETURN

END
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C
C JACOBIAN

C
C THIS SUBROUTINE CALCULATES THU JACOBIAN AND OUTWARD NORMAL
C FOR THE POINT UNDER CONSIDERATION
C
C INPUT:

C J - ELEMENT ON WHICH POINT IS LOCATED
C ETA - POINT WHERE JACOBIAN AND NOR4MAL IS CALCULATED
C
C OUTPUT:

C JAC - JACOBIAN
C NORMI - X COMPONENT OF NORMAL

C NORW=3 - Y COMPONENT OF NORMAL
C

SUBROUTINE JACOBIAN (J,ETA)
implicit real*8 (a-h,o-z)
COMbON/GEOMET/NNODES, NELEMS, ORDER, EPS, NORMI, NORMJ, JAC, NODEC,

*NODPIN1,NODPIN2,NODE(5),ELEM(360,4)
real*8 NORMI,NORMJ,JAC, NODE

INTEGER ORDER

C
C ASSUME FLAT PANEL

DN1--.5

DN 3-. 5
DXDN-DN1tELEM(J, 1 )+DN3*ELEM(J,3)
DYDN-DN1 ELEM(J,2 )+DN3*ELEM (J,4)
JAC-SQRT (DXDN*DXDN+DYDN*DYDN)
NORMI--DYDN/JAC

NORMJ -DXDN/JAC

RETURN

END
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C**iaeoa .,*****

C PRESSURE

C
C THIS SUBROUTINE CALCULATES THE COEFFICIENT OF PRESSURE (CP)
C AND THE EXTERNAL FORCES (XFORC,YFORC) ON EACH NODE

C

SUBROUTINE PRESSURE
implicit real*8 (a-h,o-z)
COMMON/GEOMET/NNODES. NELEI4S, ORDER, EPS,NORMI NORM,3AC, NODEC,
*NODPIN1,NODPIN2,NODE(5) ,ELEM(360,4)
COMI4ON/POTEN/VINF,ALPHA,VI ,VJ,PINF,RHOINF,GAMbA,MINF2,NODEP

COM4MON/VELOCIT/UVEL(240) ,VVEL(240) ,XFORC(480) ,YFORC(480),

*XOLD(480 ),YOLD(480)
REAL*8 JAC,NORMI,NORM3,GAMMA,MINF2,NODE

INTEGER ORDER

C

C STORE THE OLD VALUES OF TRACTIONS

C
DO 10 I-1,2NNODES

XOLD(I )-XFORC(I)
YOLD(I )=YFORC(I)

10 CONTINUE

C

C INITIALIZE XFORC,YFORC

C
DO 15 1-1,2*NNODES

XFORC (I )=-0.O
YFORC(I )-0. 0

15 CONTINUE

C
C CALCULATE PRESSURE AND X,Y COMPONENTS OF PRESSURE FOR OUTER SURFACE
C XFORCE - NI'P, YFOR - N3'P
C

DO 20 J-1,NELEMS

DO 20 X-1,ORDER

333-3 'ORDER- (ORDER-K)
VEL-SQRT(CUVEL(J33 ) UVEL 333) +VVEL(J333) 'VVEL (333 )
CP-1.-(VEL/VINF)**2
P=0. 5'RHOINF*VINF*VINF*CP

CALL JACOB IAN (J,NODE (K))
XFORC(333 )-XFORC(JJJ)+P*(NOR4I)

YFORC(JJJ )-YFORCCJJJ )+P*(NORMJ)

20 CONTINUE
C

C CALCULATE PRESSURES FOR INSIDE BOUNDARY WHERE INTERNAL PRESSURE
C EQUALS PRESSURE AT VENTED NODE ON OUTER SURFACE
C

VELVENT=SQRT(UVEL(NODEP)*UVEL(NODEP)+VVEL(NODEP)-VVEL(NODEP))

CPVENT- 1.- (VELVENT/VINF)*"2
PIN-. 5'RHOINF*VINF*VINF*CPVENr

DO 30 3=NELEMS+1,2*NELEMS
DO 30 Kinl,ORDER

JJ-JORER(ORDER-K)
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CALL JACOBIAN(JPNODE(K)) PRESSURE 2/2

XFORC (JJJ )-XFORC (JJJ) +PIN*( -NOM4I
YFORCCJJJ)-YFORC(JJJ )+PIN*(-NOR4J)

30 CONTINUE
RETURN
END
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C

C QF4W
C

C THIS SUBROUTINE CALCULATES THE BOUNDARY CONDITION VECTOR,Q

C USING Q -- n . Vint
C
C NOTE THAT SINCE THE OUTWARD NORX4ALS TO THE FLUID FLOW POINT INTO THE

C BODY THE NORMAL CALZUI.T-.D IN JACOBIAN SUBROUTINE ALREADY HAS THE
C PROPER SIGN (-N)
C

SUBROUTINE QFLOW
implicit real*B (a-h,o-z)

COtMt.ON/GEOMET/NNODES,NELEMS,ORDER,EPS,NORiI ,NORMJ,3AC,NODEC,

*NODPINI,NODPIN2,NODE(5),ELE.M(360,4)

COMMON/POTEN/VINF,A1LPHA,VI,VJ,PINF,RHOINF,GAMMA,MINF2,NODEP

COMMON/FLOW/H(240,240),G(240,240),Q(240),GHAT(240)

INTEGER ORDER

real*8 JAC,NORI4I,NORMJ,GA1MA,MINF2,NODE

C

C EXTERNAL FLOW PROBLEM

C Q=NORMAL*VINF
C

DO 5 I-1,NNODES

Q( I)-0.0
5 CONTINUE

DO 10 Jinl,NELEMS

DO 10 L-1,ORDER

33J*ORDER.(ORDER.L)

CALL JACOBIAN (J, NODE (L))
Q(JJ J-Q(JJ )4(NORII*VI+NORMJ*VJ)

10 CONTINUE

RETURN
END
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C SFORM
C

C THIS SUBROUTINE CALCULATES THE H AND G MATRICES FOR THE

C ELASTIC STRUCTURE
C

SUBROUTINE SFORM

implicit realB8 (a-h,o-z)

COMMON/GEOMET/NNODES ,NELEHS,ORDER, EPS ,NORMI ,NORMJ,JAC ,NODEC,

*NODPINI,NODPIN2,NODE(5),,ELEM(360,4)

COMION/STRUCT/GEXNU,HS(1920,1920),GS(1920,1440),GSHAT(1920)

COMMOt4/POSITION/XI( 1080) ,YI( 1080)
COM4MON/VELOCIT/UVEL(240),VVEL(240),XFORC(480),YFORC(480),
-XOLD(480) ,YOLD(480)

REAL*8 ETA( 12),WT(12),ETALN(10),WTLN( 10),ETAS(8 ),WrS(8),
*ETA2 (10) ,Wr2 (10)

REAL*8 SHAP(5 ),SHAP2(5)o SHAPLN(5) ,SHAPLN2(5 ),SHAP3(5),

* SHAP4(S)

REAL*8 NODE,JAC,JAC1 ,JAC2,JAC3,JAC4,JACLN .JACLN2,NORMI ,NORMJ,
*NORI I, 1NORMJ I,NO~f:I2,NORMJ2

INTEGER ORDER

C ETA AND WT ARE 12TH ORDER GAUSSIAN QUADRATRUE VALUES AND WEIGHTS
C

DATA ETA~i ),ETA(2),ETA(3),ETA(4),ETA(5),ETA(6),ETA(7),

-ETA(8),ETA(9),ETA(10),ETA( 11),ETA(12)/-.98156063dO,-.90411726d0,
*-.76990267d0,-.58731795d0,-.36783149d0..-.1252334ld0,.1252334ld0,
*367 83149d,. 58731795 dO, *76990267 dO,.90411726d0,.98156063 dO!
DATA WT( I).WT(2),WT(3),WT(4) ,WT(5) ,WT(6),WT(7),WT(8),WT(9),

*WT(1O),WT(I1),WT(12)/.0471753d0,.10693933d0,.16007833d0,
-.20316743d0, .23349254d0, .24914705d0, .24914705d0, .23349254d0,

-.20316743d0,.16007833d0,.10693933d0,.04717534d0/

C
C ETALN AND WTLN ARE 10TH ORDER LOGARITHMIC GAUSSIAN QUADRATURE
C VALUES AND WEIGHTS
C

DATA ETALN( 1),ETALN(2),ETALN(3),ETALN(4),ETALN(5),ETALN(6),
*ETALR4(7),ETALN(8),ETALN(9),ETALN(10)/.00904259d0,.05397105d0,
*.13531134d0,.24705169d0,.38021171d0,.52379159d0,.66577472d,

* 794190 19d0,.898 16102 dO,.968847 98d0/

DATA WTLN(1) ,WTLN(2) ,WTI2d(3)I,WTLN(4 ),WTLN(5) ,WTLN(6)I,WTLN(7),

*WTLN(8),WTLN(9),WrLN(10)/.12095474d0,.18636310d0,.19566066d0,
*. 17357723d0,.13569597d0, .09364708d0, .055787938d0, .02715989d0,

-. 0095151992d0, .0016381566d0/
C
C ETAS AND WTS ARE 8TH ORDER GAUSSIAN VALUES AND WEIGHTS FOR
C 11R SINGULAR INTEGRALS
C

DATA ETAS(1 ),ETAS(2),ETAS(3),ETAS(4),ETAS(5),ETAS(6),ETAS(7),

*ETAS(8)/-.00324250d0,.052349077d0,.17782733d0,.35O71788d0,
*.5458195sd0,.73342708d0, .88498305d0, .97745438d0/
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SFORM 2/7

DATA WTS(l1),WTS(2),WTS(3).WTS(4),WrS(5),WrS(6),WTS(7),WTSCB)
'/-3.930636bld0.1.7374063ld0,.85763454d0,.53836077d0,
*.35975759d0, .23726769d0, .14146228d0, .05874761dO/

C
C ETA2 AND WT2 ARE 10TH ORDER GAUSSIAN QUADRATURES
C

DATA ETA2(1 ),ETA2C2),ETA2C3),ETA2(4),EPTA2(5),ETA2C6),ETA2(7),
*ETA2(8),ETA2(9),ETA2(10)/-.97390653dO,-.86506337d.,-.67940957d0,
*-.43339539d0,-.14887434dO,.14887434d0, .43339539d0, .67940957d0,
*.86506337d01 .97390653d0/
DATA WT2(l ),WT2(2),WT2(3),WT2(4),WT2(5),WT2(6),WT2(7),WT2(B).

*W129),w2(10)/.06667134d,.14945135d0..2190B636d0,.26926672d0,

-. 29552423d0,.29552423d0,.26926672dO,.21908636d0,.14945135d0,

-.06667134d0/
DATA P1/3. 14159265d0/

C
C INITIALIZE MATRICES

C
DO 15 I-1,8NNODES

DO 10 Jinl,6*NNODES
GS(I,J)=O.0

10 CONTINUE
DO 15 J-1,8NNODES

HS(I,J)-O.0
15 CONTINUE

C
C BEGIN LOOPS ON NODE I AND ELEMENT J

DO 1000 111-1,4
DO 1000 II1,ELEMS

DO 1000 X1l,ORDER
I-(III-1 )*NNODES*II*ORDER-(ORDER-K)

IF(IIIEQ.4) THEN
INODE-2'NNO0DES+I I'ORDER- (ORDER-K)

ELSE
INODE-I

END IF
DO 1000 L-1,4

IF(III.EQ.4) THEN
J-4ELEMS(L-1 )+II+1
IFCL.EQ.4.AND.II.NE.NELEMS) J-2-NELEMS+II
IF(II.EQ.NELEN.S) J-NELEM4S*(L-1)+1
IF(II.EQ.NELEMS.AND.L.EQ.4) J3*NELEMS

ELSE
J-NELEMS*(L-1 )+II

IF(L.EQ.4) J-2-NELEMS+(II-1)
IFCL.EQ.4.AND.Il.EQ.1) J-3*NELEMS

END IF

C
C DETERMINE IF THE INTEGRATION SHOULD BE SINGULAR
C
C I.E. IS THE NODE I SOMEWHERE ON THE ELEMENT J
C ISING - 0 MEANS THE NODE I IS NOT ON ELEMENT J
C ISING - 1 MEANS THE NODE I IS THE FIRST NODE ON ELEMENT J
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C ISING - 2 MEANS THE NODE I IS THE SECOND NODE ON ELEMENT J SFORM 3/7

C ISING - 3 ETC
C

ISING-0
DO 20 LL1l,ORDER

NODES-J*ORDER- (ORDER-LL)

IF(INODE.ZQ.NODES) ISING-LL
20 CONTINUE

IFCISlNG.EQ.0) THEN
C ** * * * * * * * * * * * * * * * * * * * * * * *0*0** * * *

C THE INTEGRATION IS NOT SINGULAR

C PERFORM 12TH ORDER GAUSSIAN QUADRATURE
C * * * * * *0** * * 0 * * * * * *0** * * * * * * * * * * * * *

DO 50 KK-1, 12

C
C CALCULATE THE X AND Y COORDINATES OF THE QUADRATURE POINT
C AND CALCULATE THE DISTANCE FROM NODE I TO QUAD POINT
C

ETAA- 1.

ETAC-1.
ETAQ-ETA(KX)

SHAP( 1)-(ETAQ-ETAC)/(ETAA-ETAC)

SHAP(2 )i(ETAQ-ETAA )/(ETAC-ETAA)
X-SHAP( 1)*ELEM(J, 1)+SHAP(2 )-ELEM(J, 3)
Y-SHAP1)'ELEMCJ,2)+SHAP(2)*ELEM(J,4)

RI-X-XI (INODE)
RJ -Y-Y I ( INDDE )
R-SQRT (RI 'RI+RJ*RJ)

C
C CALCULATE U* AND P*

C
CALL JACOBIAN(JETACKK))
IF(L.EQ.1.OR.L.EQ.3) THEN

NORMI--NORMI

NORMJ inNORMJ
END IF
TERM1-(-l.)/(B.*PI*GE*(1.-XNU))

C
C NOTE THAT ON THE LEFT CONNECTING ELEMENT (L-4) Qij--Qji
C SO THAT THE GS TERM SHOULD BE NEGATIVE
C

IF(L.EQ.4) TERM1--TERM1

USTXX-TERM1*((3.-4.*XNU)*dlog(l./R)

* +(RI/R)**2)

USTXY-TERM1*((RI*RJ)/(R*R))
USTYX-USTXY

USTYY-TERMI1((3.-4.XNU)*dlog(l./R)

* +(RJ/R)*"2)

DRDN-(NORMI*RI+NORMJ*RJ )/R

TERM2-(-14)/(4.*PI'(1.-XNU)*R)
PSTXX-TERY42*(DRDN*((l.-2.*XNU)+

* 2.*(RI/R)*'2) )
PSTXY-TERM2*(DRDN*2. 'RI*RJ)/( RR)

* -(1.-2.*XNU)*((RINOR4J-RJ*NOR4I)/R))
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PSTYX-'rERM2*(DRON*2. '(Rl*RJ )/( RR)

-(I. -2.XNU)'( (RJ*N01141-RI'NOm44J)/R))

PSTYYuTERN2'(DRDN*((l.-2.*XNU).

* 2.*(RJ/R)**2))

C

C CALCULATE THE TERMS OF H AND G MATRICES

C ROW I CORRESPONDS TO TI(E X DEFORMATIONS OF NO)DE I
C ROW NNODES+I CORRESPONDS TO THE Y DEFORMATIONS OF NODE I
C COLUMN JJ CORRESPON'DS TO THE X TERM4S

C COLUMN NNODES + JJ CORRESPONDS TO THE Y TERMS
C
C FOR EXAMPLE,

C
C --

C I PXX'1 PXX*2 . . PXX*ORDER PXY'1 PXY*2 PXY*ORDER I

C I PYX'1 PYX*2 . PYX*ORDER PYY'1 PYY*2 *PYY*ORDER I

C-

C

CALL SHAPE(ORDER,ETA(KK),SHAP)

Do 35 LLU ,ORDER
JJ-J'ORDER- (ORDER-LL)

NS(I,JJ)-HS(I,JJ)+PSTXX*SHAP(LL)*JAC*WT(KK)

HS(I,4*NNODES+JJ)-HS(I,4*NNODES+J3)

* +PSTXY*SHAP(LL)*JAC'*?r(KX)
HS(4*NNODES+IJJ )-HSC4*NNODES+I,3J)

* +PSTYX-SHAP(LL)*JAC*WrCKK)

HS (4'NNODES+1, 4*N40ES+JJ )=

HS(4*NNODES+I ,4*NNODES+JJ)
* +PSTYYSHP(LL)JACWr(KK)

GS(I,JJ)-GSCI,JJ)+USTXX-SHAP(LL)-JAC*WT(KK)

GS(I,3*NNODES+JJ )-GS(I,3'NNODES+JJ)

* +USTXY'SHiAP(LL)'JACW(KK)

GS(4*NNODES+I,JJ )-GS(4-NNODES+I,JJ)
* +USTYX'SHAP(LL)*JAC*WT(KXK)

GS(4 'NNODES+I, 3 NNODES+JJ )-
* GS (4*NNODES+I ,3*NNODES+JJ)

* +USTYY*SHAP(LL) 'JAC*Wr(KX)

35 CONTINUE

50 CONTINUE

ELSE
C ** ' ** * * * * * *00 * * ** **************

C INTEGRAL IS SINGULIAR INSIDE THE ELEMENT

C
C CALCUALTE HS AND GS MATRICES SEPARATELY BECAUSE
C GS IS LOG(1/R) SINGULAR AND HS IS (1/R) SINGULAR
C

C CALCULATE GS FIRST

C
C **** * * * * * * * ***0

SINGUL-NODE( ISING)
X2Xl-ELEM(J,3)-ELEM(J. 1)

Y2YI-ELEM(J,4 )-ELEM(J,2)
PLENG7-oRTlX2X1'X2X1+Y2Y1'Y2Yl)

DO 350 KK-1,10
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CALL SHAPECORDER,ETA2(XX),SHAP)

CALL JACOBIANCJ,ETA2(KX))

JAC2-JAC

ZT-SINGUL-(SINGUL+1. ) ETALN (KK)
CALL SlAPE(ORDERET,SHAPLN)
CALL JACOBIAN(JET)

JACLN-JAC
ET-SINGUL+(1.-SINGUL)*ETALNCKK)

CALL SHAPE(ORDERETSHAPLN2)

CALL JACOBIAN(J,ET)

JACLN2-JAC

ET-SINGUL-(1.+SINGtL)*.5*CETA2(KK)+1.)

CALL SHAPE(ORDER,ET,SHAP3)
CALL JACOBIAN(J,ET)

JAC3 -JAC

ET-SINGUL+(1.-SINGUL)*.5*(ETA2(KK)+l.)

CALL SHAPE(ORDER,ET,SHAP4)
CALL JACOBIAN(J,ET)

JAC4-JAC

D0 325 LL-1,ORDER
JJJ*ORDER..(ORDER-LL)

IF(L.EQ.4) TERK--TERM

TERMX-(X2X 1/PLENG )**2*TERM~

TEF44YC(Y2Y I/PLENG) * *2 *TERM
TERN3m-(3.-4.*XNU)*dlog(ABS(PLENG*(l.+SINGUL)/2.))

**TERM.

TERM4(.4.*XNU)
tdiog(ABSA2,LNG*(SINGUL-1.)/2'.))

* *TEM

TERI1(3.-4.*XNU)*TERM

TKRM2-(3. -4.*XNU)*TERM

GSCI ,JJ)-GSCI ,JJ)+

* SHAPCLL)*TERXJAC2*WT2CKX)

*SHAP3LL)TER43*JAC3(1.+SINGUL)'.5WT2(KKJ-

*SHAP4(LL)TERM44JAC4*(l.-SINGUL)*.5WT2(KK)+

* SHAPLN(LL)*TERMI1JACLN*( .+SINGEJL)-WrLN(K.)+

* SHAPLN2(LL)*TER23JACLN2-( .-SINGUL)*?rLN(KK)

GSCI, 3NNODES+JJ )-GS(I ,3*NNODES+JJ )+

* SHAP(LL)*X2X1*Y2Y1*JAC2-Wr2(KX) TERM/PLENG**2

GS (4NNODES+I ,JJ )GS (4*NNCDES+I ,JJ )4

* SRAP(LL)*X2XIfrY2Yl1JAC2*WT2(KK)*TERM/PLENG**2
GS(4*NNODES+I ,3*NNODES+JJ )-

* GS(4*NNODES4I,3*NNODES+33 )+
*SHAP (LL) *TER YJAC2 WT2 (KX) -
*SHAP3(LL)*TERM3*JAC3'C1.+SINGUL)*.5*Wr2(KK)-

*SHAP4(LL)*TERM4JAC4*(l.-SINGUL)*.5WT2(KK)+

*SHAPLN (LL) *TERM I JACLN *( 1. +SINGUL) *WrLN (KK) +

* SHAPLN2(LL)PTER2JACLN2*(l.-SINGUL)*WTLN(KK)

325 CONTINUE
350 CONTINUE

C
C CALCULATE THE HS MATRIX

C FOR SINGULAR PANELS PXX-PYY-0.
* C
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DO 450 KK-1 9 6

TERM=(1.-2.'XNU)/(4.*PI'C1.-XNU))
BTi-1 * -SINGtJL) ETAS(KK)+SING-UL
CALL JACOBIAN(3,ET)

JACI-JAC

NORMI 1140RM1

NORMl-NOF44J
IF(L.EQ.1.OR.L.EQ.3) THEN

NONGI 1 in-NORI4I 1

NORMI4J -NORMJ 1
END IF

PXYI-TER$4((X2XI/PLENG)NORIJ-(Y2YI/PLENG)-NORMIl)

PYX1-TERM'( (Y2YI/PLENG)*NORMI-(X2X1/PLENG)*NORM4J1)

CALL SHAPE (ORDER, ET, SHAN)
ETC 1.-SINGUL)ETAS(KX)+SINGUL
CALL JACOBIANJ.ET)
JAC2-.JAC

NORM 12-NORMI

NORJ2 -NOMJ
IF(L.Ef2.1.OR.L.EQ.3) THEN

NOR1MI2--NOIR4I 2
NOR4J 2--NORMJ 2

END IF
PXY2-TERM*((X2Xl/PLENG)*NORMJ2-(Y2Y1/PLENG)*NORM~I2)

PYX2-'rERM*( (Y 2Y I/PLENG) 0 NORMI 2- (X2Y1I/PLENG) *NORM4J2)
CALL SHAPE (ORDER, ET,SHAP2)

DO 425 LL1l,ORDER
JJ-J 0 ORDER- (ORDER-LL)

HS(I,4*NNODES+JJ )-HS(I,4NNODES4JJ )-

* SHiAP(LL)-PXY 1 JACI1(2./PLENG )-WrS (KIC)+

* SHAP2(LL)*PXY2*JAC2*(2./PLENG)*WTS(KX)
HS(4*NNODES+IJJ)-HS(4*NNODES+I,JJ)-

* SHAP(LL)0PYX1'JACI 0(2./PLENG) 0WTS(KKJ+

SHAP2(LL)*PYX2*JAC2*(2./PLENG)*WrS(KK)
425 CONTINUE

450 CONTINUE

C
C CALCULATE F(SINGLILARITY) LOG TERMS AND ADD TO THE HS TERMS
C

TERM-(1.-2.*XNU)/(4-PI(l.-XNU))

CALL SHAPE(ORDER,SINGULSHAP3)
CALL JACOBIAN (3,SINGUL)

IF(L.EQ.1.OR.L.EQ.3) THEN

NORM I--NORM I
NORMJ--NORMJ

END IF
PXY-TERM*((X2Xl/PLENG)*NORMJ-(Y2Yl/PLENG) 0 NORMI)

PYX-TERM((Y2YI/PLENG)*NOFRI-(X2Xl/PLENG)NORMJ)
DO 475 LL-I,ORDER

JJ-JORDER- (CRDER-LL)
HS(1,4'NNODES+j)-HS(I,4*NNODES+JJ)-

0 SHAP3(LL)*PXY*JAC*(2./PLENG)*dloq(ABS(-1.-SINGUL) )+

0 SHAP3(LL)*PXY*JAC0 (2./PLENG)*dlog(ABS(l.-SINGUL))

HS(4*NNODES+I,JJ)-HS(4*NNODES+I,JJ )-
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SHAP3(LL)*PYXJAC(2.PLEN;)dloq(ABS(1.-SINGU))+

1000 CONTINUE IF 7/7*dlg(BS(.-INGL)

475 CONTINUE
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C
C SHAPE

C
C THIS SUBROUTINE CALCULATES THE SHAPE FUNCTIONS

C USING LAGRANGXAN POLYNOMIAL SHAPE FUNCTIONS
C
C INPUT:

C SORDR - ORDER OF SHAPE FUNCTION
C TERM - LOCATION WHERE SHAPE FUNCTION IS TO BE CALCULATED
C
C OUTPUT:

C SH - SHAPE FUNCTION ARRAY
C

SUBROUTINE SHAPE (SORDR, TERM, SH)
implicit real*8 (a-ho-z)

COMMON/GEOMET/NNODES, NELEMS, ORDE R, EPS, NORM I, NORMJ, JAC, NODEC,
'NODPIN1,NODPIN2,NODE(5),ELEM(360,4)
real*8 SH(5),NORII,NORMJ,JAC,NUMER,NODE

INTEGER ORDER,SORDR

C
C FOR CONSTANT FIT

C
IF(SORDR.EQ. 1) THEN

SH(1 )-1.

ELSE

C
C CALCULATE HIGHER ORDER SHAPE FUNCTIONS

C
X, 60 I-1,SORDR
DENOM 1.

NUMER-1.

DO 55 K-1,SORDR
IF(I.NE.K) THEN

DENOM (NODE(I )-NODE(K) )*DENOM

NUMER-(TEW-NODE(K) )*NUMER
END IF

55 CONTINUE
SH(I )=NUMER/DENOM

60 CONTINUE

END IF

RETURN
END
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C
C SINFO
C
C THIS SUBROUTINE READS IN THE INFORMATION NEEDED TO
C CALCULATE THE STRUCTURE MATRICES
C
C INPUT:

C GE - SHEAR MODULUS
C XNU - POISSON MODULUS
C

SUBROUTINE SINFO
implicit real*8 (a-h,o-z)
COMMON/STRUCT/GE,XNU,HS(1920, 1920),GS(1920, 1440),GSHAT(1920)

C
C

READ(5, 10) GE,XNU
10 FORMAT(2FI0.4)

RETURN

END
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C SOLVE

C
C THIS SUBROUTINE SOLVES THE LINEAR SYSTEM OF EQUATIONS
C BY THE GAUSS ELIMINATION METHOD PROVIDING FOR
C INTERCHANGING ROWS WHEN ENCOUNTERING A ZERO DIAGONAL
C COEFFICIENT

C
C A: SYSTEM MATRIX
C B: ORIGINALLY THE INDEPENDENT COEFFICIENTS (RHS)
C AFTER SOLUTION IT CONTAINS THE VALUES OF
C SYSTEM UNKNOWNS

C N: ACTUAL NUMBER OF UNKNOWNS
C D: DETERMINANT
C

SUBROUTINE SOLVE(A,B,D,N,NDIM)

implicit real*8 (a-h,o-z)
REAL*8 A(NDIM,NDIM) ,B(NDIM)
NI-N-1
DO 1OU K-1,NI

K1-K+1
C-A(K,K)

IF(ABS(C)-0.00000 dO) 1,1,3
1 DO 7 JKI,N

C
C TRY TO INTERCHANGE ROWS TO GET NON ZERO DIAGAONAL

IF(ABS(A(J,K) )-0.O00000I0) 7,7,5

5 DO 6 L-K,N
C-A(K,L)
A(K,L)-A(J,L)

6 A(J,L)-C

C-B(K)

B(K)-D(J)

B(J)-C
C-A(K,K)
GO TO 3

7 CONTINUE
8 WRITE(6,2) K
2 FORAT('*****SINGULARITY IN ROW',15)

D 0.

GO TO 300
C
C DIVIDE ROW BY DIAGONAL COEFFICIENT

C
3 C=A(K,K)

DO 4 J-K1,N
4 A(X,J)-A(K,J)/C

B(K)-B(K)/C
C
C ELIM!NATE UNKNOWN X(K) FROM ROW I

*C
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DO 10 I-KI,N
C-A(I,K)
DO 9 J-KI,N

9 A(I,J)-A(I,J)-C*A(K,J)
10 B(I)-B(I)-C*B(K)
100 CONTINUE

C
C COMPUTE LAST UNKNOWN
C

IF (ABS(A(N,N))-0.00000ldO) 101,101,102

101 WRITE(6,2) N

D-0.0
GO TO 300

102 B(N)-B(N)/A(N,N)

C
C APPLY BACKSUBSTITUTION TO COMPUTE REMAINING UNKNOWNS

C
103 DO 200 L-1,N1

K -N -L
KI-K+1

DO 200 J=KI,N

200 B(K)-B(K)-A(K,J)*B(J)
C
C COMPUTE VALUE OF DETERMINANT

C
D-1.
DO 250 I-1,N

250 D-D*A(I,I)
300 RETURN

END
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C

C sour
C
C THIS SUBROU7TINE PRINTS OUT THE ELASTIC STRUCTURE MATRICES,

C HS, GS AND GSHAT

C

SUBROUTINE SOLT

implicit real*8 (a-h,o-z)

COMMON/GECM4ET/NNODES,NELEMS,ORDER, EPS,NORI, NORMJ,JAC, NODEC,

*1NODPIN1,NODPIN2,NODE(5),ELEM(360,4)
COR.4MON/STRUCT/GE,XNU,HC1920,1920),GS(1920,1440),GSHAT(1920)

real*B NOPMI, NORMJ, JAC, NODE
INTEGER ORDER

C

C

WRITE(6, 1)
1 FORMAT(//,22X,'*--*STRUCTJRAL MATRIX INFORMATION""",//)

WRITE(6,2)

2 FORM'AT(5X,'HS XX MATRIX',/)

DO 10 1I-1,NNODES*4
WRITE(6, 3) (HSCI,J) ,J-1 ,NN0DES*3)

3 FO~e4AT(35(13(F6.4,3X),/))
10 CONTINUE

WRITE(6, 11)
11 FORMAT(SX,'HS XY MATRIX',/)

DO 13 I-1,NNODES*4

WRITEC6,12) (HS(I,4'NNODES+J),J-1,NNODES*3)

12 FOIR4AT(35( 13(F6.4, 3X) ,/))
13 CONTINUE

WRITE(6, 120)
120 FORMAT(5X, 'KS YX MATRIX',/)

DO 150 I-1,NNODES*4
WRITEI6,115) (HS(4*NNODES+I,J),J-1,NNODES*3)

115 FORN4AT(35(13CF6.4,3X) ,/))
150 CONTINUE

WRITEC 6,220)
220 FURMAT(5X,'HS YY MATRIX',/)

DO 250 1-1,NNODES*4
WRITE(6,215) CHS(4-NNODES+I,4*NNODES+J),J-1,NNODES-3)

215 FORMAT(35( 13(F6.4,3X) ,/))
250 CONTINUE

WRITE(6, 14)
14 FORMAT(//, 5X, 'GS MATRIX,/

DO 20 I-1,NNODES*8
WRITE(6, 15) (GS(I,J),J-1,NNODES*%)

15 FORMAT(70(13(F6.4,3X),/))

20 CONTINUE
WRITE (6, 22)

22 FORMAT(//,5X,'GSHAT MATRIX',/)

WRITE(6,23) (GSHAT(I ) ,I-1,8*NNODES)

23 FORMAT(95C13(F7.4,3X),/))
RETURN
END
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C
C SOLUrPUT

C
C THIS SUBROUTINE OUTrPUTS THE DEFORMATION MATRIX, U

C NOTE THAT AFTER THE SOLVE, THE VECTOR WSHAT NOW CONTAINS THE
C SOLUTION DEFORMATIONS

C

SUBROUTINE SOUTPUT( ITER)
implicit real*8 (a-h,o-z)

COMI4ON/GEOMET/NNODES, NELEMS, ORDER, EPS, NORMI,NORMJ, JAC, NODEC,
*NODPINI,NODPIN2,NODE(5),ELEM(360,4)

COMMON/STRUCT/GEoXNU,HS(1920,1920),GS(1920,1440)oGSHAT(1920)

real*8 NORMI,NORMJ,JAC,NODE
INTEGER ORDER

C

C
WRITE(6,1) GE,XNU,N0DPIN1,NODP1N2,ITER-1

1 FORMAT(//,22X,'*****DEFORMATION MATRIX***,/,
*10X,1SHEAR MODULUS - ,F1U.4,5X,'POISSON MODULUS - ',F1O.4,/,

*10X,'PINNED NODES ARE - ',213/,10X,'ITERATION *0,12,/)

WRITE(6, 2)

2 FORMAT(//,5X,'U MATRIX',!)

DO 10 I-1,4NNODES
WRITE(6,3) GSHAT(I),GSHAT(4*NNODES+I)

3 FORMAT(F20.B.,2X,F20.8)

10 CONTINUE

RETURN

END
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0C
C
C SURF
C
C THIS ROUTINE GENERATES X,Y LOCATIONS OF LEFT, CENTER AND
C RIGHT ENDS OF GEOM4ETRY PANELS FOR CYLINDER WITH OUTER AND
C INNER RADIUS

C
C INPUT:
C NELEMS - NUMBER OF OUTSIDE PANELS

C THE SA14E NUMBER OF PANELS IS GENERATED ON INNER

C SURFACE
C RADOUT - OUTER RADIUS
C RADIN - INNER RADIUS

C
C OUTPUT:
C ELEM(I,1),EL.EM(I.2) - X,Y OF LEFT END OF ELEMENT J
C ELEM(1,3),ELEM(I,4) - X,Y OF RIGHT END OF ELEMENT 3

C
C~ 0**00************0 *

SUBROUTINE SURF
implicit real*8 (a-h,o-z)

COMI4ON/GEOMET/NNODES,*NELEMS, ORDER, EPS, NORM I, NORMJ ,JAC, NODEC,
*NODPIN1,NODPIN2,NODE(5),ELEM(360,4)

integer order
real*8 NOL)E,NORMI,NORMJ,JAC

C

PI-3. 14159265
READ( 5,') RADOUT,RADIN

I FORMAT(2F10.4)

C

C GENERATE FLAT PANEL GEOMETRY

C
ANGLE-2.-PI/NELEMS

PLENGO-2.* RADOITdTAN (ANGLE/2.)
PLENGI-2. 'RADINdTAN(ANGLE/2.)

C

C CALCULATE X,Y LOCATIONS FOR OUTER SURFACE
C

DO 10 I-1,NELEMS

ANG-(I-1 )'ANGLE4PI
RSIDE-SQRT( (PLENGO/2. )**2+PRJDUUT*O2)
ELEM(I,1 )=RSIDEdCOS(ANG-(ANGLE/2.))

ELEM(I,2)=RSIDE'dSIN(ANG-(ANGLE/2.))

ELEM(1,3 )-RSIDEdCOS(ANG+(ANGLE/2.))
ELEM(I,4)-RSIDE'dSIN(ANG+(ANGLE/2.))

10 CONTINUE

C
C CALCULATE X,Y LOCATIONS FOR INNER SURFACE

C
DO 20 I-1,NELEMS

ANG-(I-1 )'ANGLE+PI
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RSIDE-SQRT( (PLENGI/2. )*2+RADIN**2)

ELEMCNKLEM4S+I, I)-RSIDE'dCOS(Ak4G-(ANGLE/2.))

ELEM4(NELEms+I,2)-RSIDE'dSIN(ANG-(ANGLE/2.))

ELEI4(tLEMS+I,3)-RSIDEdCOS(ANG+(ANGLE/2.))
ELEM(NELEMS+I,4).SRSIDE*dSINCANG(A4GLE/2.))

20 CONTINUE
RETURN

END
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Ct*** .*t**.*** **..*..***.*******

C VELOC
C
C THIS SUBROUTINE CALCULATES THE U AND V COMPONENTS OF THE
C PERTURBATION VELOCITY (UVEL,VVEL)
C

SUBROUTINE VELOC
implicit real*B (a-h~o-z)
C04?40N/FIAGS/IFIAG, PFLAG, ITER
COM4MON/GEOMET/NNODES ,NELEMS,E, El'S,NORM I, NORI4J ,JAC ,NODEC,
*NODPIN1,NODPIN2, NODE(S) .ELEM(360,4)

COMMON/POSITION/XI (1080) YI (1080)
COMMON/FLOW/H(240,240),G(240.,240),Q(240),GHAT(240)

COM4MONIPOTEN/VINF,ALPHA,VI,VJ,PINF,RHOINF,GAMMA,MNF2,NODEP

COMON/VELOCIT/UVEL(240),VVEL(240),XFORC(480),YFORC(480),

'XOLD(480) ,YOLD(480)

REAL*B SHAP(5),ETA( 12),WT( 12),SHP(5)
REAL-8 ETAS(8),WTS(8 ),SHP1(5 ),SHP2(5) ,SHP3(5)

REAL-8 NODE,JAC,JACI,JAC2,NORMI,NORN4J,GAMMA,MINF2
INTEGER ORDER,PFLAG

REAL-8 TERIQX(240,240),TERMQY(240,240),TERMPX(240,240),
*TERM4PY(240,240)

C

C ETA AND WT ARE 12TH ORDER GAUSSIAN QUADRATRUE VALUES AND WEIGHTS

C

DATA ETA(1 ),ETA(2),ETA(3),ETA(4),ETA(5),ETA(6),ETA(7),
*ETA(8),ETA(9),ETA( 10),ETA( 1),ETA( 12)/-.98156063d0,-.9041 1726d0,
*-.76990267d0,-.58731795d0,-.36783149d0,-.1252334ld09 .1252334d,

*.36783149d0..58731795d0,.76990267d0,.90411726d0,.98156063d0/

DATA WT(1 ),WTC2),WT(3)#WT(4),WT(5).WT(6),WT(7),WT(8),WT(9),

*WT(I 1) ,WT C11),WT(C12 )/. 0471753d0,.10693933d0,.16007833d0,

*.20316743d0,.23349254d0,.24914705d0,.2491470SdO,.23349254d0,

*.20316743d0, .16007833d0,.10693933d0, .04717534d0/

C

C ETAS AND WTS ARE 8TH ORDER GAUSSIAN VALUES AND WEIGHTS FOR

C 1/R SINGULAR INTEGRALS

C

DATA ETAS~i ),ETAS(2),ETAS(3),ETAS(4),ETAS(5),ETAS(6),ETAS(7),

*ETASC8)/-.00324250d0, .05349077d0,.17782733d0, .35071788d0,
-.54581952d0, .73342708d0, .88498305d0, .97745438d0/

DATA WTS( 1),WTS(2),WTS(3),wTS(4),WTS(S),WTS(6),WTS(7),

*WTS(8)/-3.93063681d0,1.7374063ld0,.85763454d0,.53836077d,

-.35975759d0, .23726769d0,.14146228d0, .05874761d0/
DATA P1/3. 14159265d0/

C

C INITIALIZE MATRICES

C

DO 10 I-1,NNODES

UVEL(I -O.0

VVEL(I )-0.0

DO 10 3-1,NNODES

TERb PX(I ,J )-0.0
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TERMQX(I ,J)-0.0
TE144QY (I, J)-0. 0

10 CONTINUE
C
C BEGIN LOOPS ON NODE I AND ELEMENT J
C FOR EACH I ROW, PERFORM INTEGRATIONS OVER EACH ELEMENT J
C AROUND THE STRUCTURE. FILL IN ONE ROW AT A TIME
C

DO 1000 I-I,NNODES
DO 1000 JinI,NELEMS

C
C DETERMINE IF THE INTEGRATION SHOULD BE SINGULAR

C IE IS THE NODE I ON THE ELEMENT J?
C ISING - 0 MEANS NODE IS NOT ON ELEMENT

C ISING - I MEANS NODE IS FIRST NODE ON ELEMENT J
C ISING - 2 MEANS NODE IS SECOND NODE ON ELEMENT J
c ISING - 3 ETC
C

ISING-0

DO 20 L-I,ORDER

NODES-J 'ORDER- (ORDER-L)
IF(I.EQ.NODES) ISING-L

20 CONTINUE
IF(ISING.EQ.0) THEN

C * * * * * * * * * * * * * 0 * * * * * * * * * * * * * * * * * *

C THE INTEGRATION IS NOT SINGULAR

C PERFORM 12TH ORDER GAUSSIAN QUADRATURE
C * * * * * * ** * * * * * * * * * * * * * * * * * * * * 0 *

DO 50 K-1, 12
C
C CALCULATE THE X AND Y COORDINATES OF THE QUADRATURE POINT
C AND CALCULATE DISTANCE FROM NODE I TO QUAD POINT
C

ETAA-I.
ETAC 1.

ETAQ-ETA(K)

SHAP( 1 )-(ETAQ-ETAC)/(ETAA-ETAC)
SHAP(2 )-(ETAQ-ETAA)/(ETAC-ETAA)

X-SHAP(1) 'ELEM(J, I)+SHAP(2 ) *ELEM(J,3)
Y-SHAP( 1) 'ELEM(J,2 )+SHAP(2) 'ELEM(J,4)
RI-XI(I)-X

RJ.Y1(I )-Y
R=SQRT( RI 'RI+RJRJ)

C
C CALCULATE DQ*/DX, D(/DY,DPHI-/DX,DPHI-/DY

C

CALL JACOBIAN(J,ETA(K))

D-RI*(NORMI )+RJ'(NORMJ)
DPSTDX-RI/ ( R*R)

DPSTDY--RJ/(R*R)
DQSTDX-((R*R(NORMI)-D*2.*RI)/(R'R*R*R))

DQSTDY-((R*R * (NORM J )-D*2.*RJ)/(RtR*RR))

C
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C CALCULATE DH/D AND DG/D MATRIX TERMS

C ROW CORRESPONDS TO NODE I

C COLUMN CORRESPONDS TO GL0BAL NUMBER OF ELEMENT NODES

C I.E NODE 1,2,3 ON ELEMENT I ARE 1,2,3

C NODE 1,2,3 ON ELEMENT 2 ARE 4,5,6

C NODE 1,2,3 ON ELEMENT 3 ARE 7,8,9

C
CALL SHAPE(ORDER,ETA(K) ,SHAP)

DO 35 L-1,ORDER

JJ"J*ORDER- (ORDER-L)
TERMQX( I,J3 )-TERMQX (I,JJ)+

* SHAP(L)*DQSTDX*JACWT(K)/(2.*PI)

TE4MPX ( I,JJ )-TERMPX( I, JJ)+
* SHAP(L)*DPSTDX*JAC*WT(K)/(2.*PI)

TEI MQY( I,JJ )-TERMQY ( 1,JJ )+
* SHAP(L)*DQSTDY*JAC*WT(K)/(2.*PI)

TERMPY (I,JJ )=TER4PY (I, JJ)+
* SHAP(L)*DPSTDY*JAC*WT(K)/(2.*PI)

35 CONTINUE
50 CONTINUE

ELSE

C
C * * * * * * * * * * 0 * * 0 * * * 0 * * * * * * * 0 * * * *

C THE INTEGRAL IS SINGULAR ON ELEMENT J

C
C THE DPHI*/D TERMS ARE CALCULATED SEPARATELY FROM THE DQ*/ D TERMS

C BECAUSE DPHI/D IS I/R SINGULAR AND DQ'/D IS 1/R-R SINGULAR

C
C CALCULATE DQ*/D TERMS FOR SINGULAR ELEMENT

C

C
C BREAK UP INTERVAL INTO SINGULAR AND NON-SINGULAR PART

C SINGULAR PART CENTERED AROUND SINGULARITY

C START-START OF SINGULAR PORTION

C END-END OF SINGULAR PORTION

C
SING-NODE ( ISING)

DELTA- (I.-ABS(NODE(ISING)))
START-NODE (ISING )-DELTA

END-NODE( ISING )+DELTA

SUM-0. 0
ETAA--1.

ETACI , I.
C
C IF START OF SINGULAR INTEGRAL IS -1 AND END IS I THEN
C THE ENTIRE ELEMENT IS IN THE SINGULAR INTERVAL

C SKIP THE NON-SINGULAR CALCULATIONS

C
IF(START.EQ.-l.dO.AND.END.EQ.1.dO) GO TO 301L

DO 250 K-1,12
C

C START OF SINGULAR INTERVAL IS -1, END IS END
C THERFORE NON-SINGULAR PART IS FROM END TO I

* C

107



0 VELOC 4/6
IF(START.EQ.-1.dD) THEN
ET-(ETAIM+ 1.) *(1. -END) /2. +END
CALL SHAPE (ORDER, ET, SHP)
ETAQ-ET
SHAP( M-(ETAQ-ETAC)/(ETA.A-ETAc)

SHAP(2 )-(ETAQ-ETAA)/(ETAC-ETAkA)

X-SHAP( 1)*ELEM(J, 1 )+SHAPC2 )*ELEM(J, 3)
Y-SHAP( 1)*ELEM(J,2 )+SHAP(2)'ELEM(J,4)
RI=XIM( -X

RJ-YICI)-Y

R-SQRT(RI*RI+RJ*RJ)

CALL JACOBIAI4(J,ET)
DQSTDX-(NORMI )/( RR)
DQSTDY-(NORMJ)/(R*R)

DO 100 L=1,ORDER

JJJ-J*ORDER- (ORDER-L)
TERMQX(1 ,JJJ)=TERIQX( I,JJJ)+

* SHPCL)*DQSTDX*JAC*.5*(l.-END)*WT(K)/(2.*PI)

TERMQY(I,JJJ )TERMQY(I ,JJJ )*
SHP(L)*DQSTDYJAC*.S(l.-END)*W(K)/(2.*PI)

100 CONTINUE

ELSE
C
C END OF SINGULAR INTERVAL IS 1
C THEREFORE NON-SINGULAR PART IS FROM -1 TO START0 C ET-(ETA(K)+.)*(START+1j)/2.-.

CALL SIAPE(ORDER,ET,SHP)

ETAQ-ET
SHAP(l1)-(ETAQ-ETAC)/(ETAA-ETAC)

SHAP(2 )-(ETAQ-ETAA)/(ETAC-ETAA)
X-SHAP(1)*ELEM(J,1)+SHAP(2)*ELEM(J,3)

Y-SHAP( 1) *ELEM(3,2 )eSHAP(2 )-ELEM(J,4)
RI=XI(I )-X

RJ-YI (I)-Y
R-SQ~R (RI *RI+RJ*RJ)

CALL JACOBIAN(J,ET)
D(.STDX-(NORMI )/( RR)

DQSTDYC(NOF4J )/(R*R)
DO 200 L=1,ORDER

JJJ-J3ORDER- (ORDER-L)

TERMQX(I ,JJJ)-TERMQX( I,JJJ )+
SHP(L)*DQSTDX*JAC*.*(START+1.)*T(K)/(2.*PI)
TER4QY (I ,JJJ )=TERMQY (I ,JJJ )+

* SHP(L)-DQSTDYJAC*5*(START+1)WT()/(2*PI)
200 CONTINUE

END IF
250 CONTINUE
C
C NOW CALCULATE SINGULAR INTEGRAL
C
300 CONTINUE

DO 400 X-1,12
X2Xl=ELEM(J,3)-ELEM(J, 1)
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Y2Yl-ELEM(3,4 )-ELEM(3,2)
PLENG=SQRT(X2X X2X1+Y2Y10 Y2YI)

ET-.5*(END-START)*(ETA(K)+l. )+START

CALL JACOBIAN(J,ET)

DQSTDX=NORMI1 8. /(PLENG*PLENG(END-START))

DQSTDYN0J8. /(PLENGPLENG(END-START))
CALL SHAPE (ORDER, ET, SHP)
DO 400 L-1,ORDER

333inJ0RDER-(ORDER-L)
TEIFMX( I,JJJ )-TEJRQX( I,JJJ )+

* SHP(L)*DQSTDX*JAC-WTCK)/(ETA(K)**2-(2.-PI))
TERMQY(I,JJJ)-rEI4QY(I,J33 )+

*SHP(L)*D STDY3JAC*WT(K)/(ETA(K**2*(2.P))
400 CONTINUE

C

C CALCULATE SUMMATION OF WT/ETA2

Do 500 K-1,12
SUM-SUM+WT(K )/ETA(K )*2

500 CONTINUE

C
C CALCULATE F(0) AND ADD -(SUM+2)F(0) TO TERM4S

C

ET=. 5*(END-START)+START

CALL JACOBIAN(J,ET)

DQSTDX-NORMI18./(PLENG*PLENG*(END-START))

DQSTDY -NORM.J8 ./ (PLENG *PLENG *(END -START))
CALL SHAPE (ORDER, ET, SHP)
DO 600 L-1,ORDER

JJ-J ORDiER- (ORDER-L)
TERNQX(1,333 )-TEF44QX(I,33J)-

* (SUM+2. )SHP(L)D[QSTDXJAC/(2.*PI)

TERMQY (1,333)-rEV4QY (I,JJJ )-

* (SUM+2. )SHP(L)*DQSTDY*AC/(2.*PI)
600 CONTINUE
C * * * * * * * * * * * * * e * * 0 * 0* ** * * ***0 *0

' CALCULATE DPHI*/D TERM4S FOR THE SINGULAR ELEMENT

C
X2Xl-ELEI4(J,3)-ELEM(3, 1)

Y2Y -ELEMCJ.4 )-ELEM(3,2)
PLENG-S(. RT(X2X1*X2Xl+Y2Yl*Y2Y1)

PX-X2XV.(2./PLENG*2)*(1./(2.*PI))
PY-Y2YI*(2./PLENG**2)'(1./(2.*PI))

C
C PERFORM 8TH ORDER SUMMATION
C

DO 740 K-1,8
ET-(-1.-SING)ETAS(K)+SlNG

CALL JACOBIAN(J,ET)
JAC 1JAC
CALL SHAPE (ORDER, ET, SHP 1)
ET-(1.-SING)ETAS(K)+SING

CALL JACOBIAN(J,ET)
JAC2 -JAC
CALL SHAPE(ORDER,ET,SHP2)

109



VELOC 6/6
DO 730 L1l,ORDER

333 -J*ORDER- (ORDER-L)

TEF44PX (1,JJJ )-TEF44PX (I, JJJ)-

O SHPJ (L*PXJACI*WTS(X )+SHP2(L)*PX*JAC2*wTS(X)

TE144PY(I,JJJ)-TEIR4PY(I,JJ3 )-
SHP1 (L)*PY*JAC1'WTS(K,)eSHP2(L)*PY*JAC2*wrs(K)

730 CONTINUE
740 CONTINUE

C

C CALCULATE F(SINGULARITY) LOG TERMS AND ADD TO THE SUMMATION
C

CALL SHAPE(ORDER,SING,.SHP3)

CALL JACOBIAN(J,SING)

DO 750 L-1,ORDER

JJ-J0RDER (ORDER-L)

TERMPX( I ,JJJ)-TER4PX( 1,333)-
* SHP3(L)*PX*JACdoc(ABS(-l.-SING))+
* SHP3(L)*PX*JACdlox(ABS(l.-SING))

TEIF1PY (1,333)-TEM4PY (I ,JJJ )-
*SHP3 (L) PY *AC* dloc(ABS (- 1.-SING) )+
*SHP3(L)PY*JACdof(ABS(.-SING))

750 CONTINUE

END IF

1000 CONTINUE
C
C IF PRINT FLAG - 1 PRINT OUT' TERM MATRICES

IF(PFLAG.EQ.1.UR.PFLAG.EQ.3) CALL VEWoET(TERY4QX,

0 TEPMQY,TER14PX,TEIR4PY)
C
C CALCULATE U AND V PERTURBATION VELOCITIES
C

Do 12U0 1-1,NNODES
Do 1200 J-1,NNODES
UVEL(I)-UVELCI)*(-TERMQX(IJ)'GHAT(J)

* +TEIM1PX(I,J)-Q(J))
VVEL(I)-VVEL(I)+(-TEHNQY(I,J)*GHAT(J)

* TEiIMPY (I,J) Q (J))
1200 CONTINUE

DU 1250 I-1,NNODES

UVEL( I)-UVEL(I )I.5
VVEL(I)-VVEL(I )/.5

1250 CONTINUE

do 1300 1-1,nnodes

uvel( i)-vi-uvel( i)
vvel(i)-vj-vvel( i)

1300 continue
RETURN

END
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C
C VELOUT

C
C THIS SUBROUTINE PRINTS THE INTERMEDIATE PARTS OF THE

C VELOCITY MATRICES FOR C2HECKOUT

C

SUBROUTINE VELOr ( TE WQX, TER4QY, TEJRPX, TER4PY)

implicit reaIB8 (a-h,o-z)
COMMON/GEOMET/NNODES,NELEMS,ORDER,EPS,NORMI,NORMJ,JAC,NODEC,

*NODPINI,NODPIN2,NODE(5),ELEM(360,4)
real'8 TERMQXC240,240),TERMQYC240,240),TERMPX(240,240),
*TEIR4PY(240,240)
real*8 NORNI,14ORMJ,JAC,NODE

INTEGER ORDER
C

C

WRITE(6, 1)

1 FORMAT(//,5XC'TERMQX MATRIX',/)

DO 10 I-1,NNODES

WRITE(6,5) (TERLIQX(I,J) ,J-1,NNODES)

5 FOF4AT(/13(8(F10.4,5X),/))

10 CONTINUE

WRITE(6, 11)

11 FORMAT(//,5X,'TERMQY MATRIX#,/j

Do 20 I-1,NNODES

WRITE(6. 15) (TERMQY(I,J),4.1,NNODES)

15 FO[f4AT(/13(8(F10.4,5X),/))
20 CONTINUE

WRITE (6, 21)
21 FORMAT(//,5X,'TERMPX 1VATRIX#,/)

DO 30 IinI,NNODFZ

WRITE(6,25) (TERt4PX(I,J) ,J-1,NNODES)

25 FOIRAT(/13(8(F10.4,5X),/))

30 CONTINUE

WRITE(6, 31)

31 FOR?4AT(//,5X,'TERMPY MATRIXI,/)

DO 40 I-1,NNODES

WRITE(6..35) (TERMPYCI,J) ,J=1,NNODES)

40 CONTINUE

RETURN
END



Aiopendix C: Background Concepts

Weighted Residuals

The method of weighted residuals may be defined in the following manner. Begin with the problem

definition;

L(u0 ) = b in domain 0 (C1)

with boundary conditions

S(u 0 ) s on boundary r 1  (C2)

G(u 0 ) = g on boundary 12

where u. is the exact solution to the problem. The approximation may be made so that

u = u = akNk + a, (C3)
k=1

where ak are undetermined coefficients and Nk are linearly independent functions. Substituting the

approximation into Equations C1 and C2:

L(u) - b 0 = R
S(u) -s 0 =R, (C4)
G(u) -g 0 = R2

where R, R1 and R2 are the residuals, or the errors. The purpose of the various numerical methods

techniques is to make all the errors as small as possible over the domain and boundary. One way of doing

this is with the weighted residual method.

Take a function w, such that

w = I bkIk (C5)
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The error can be distributed throughout domain Q by multiplying the error by the function w which is

called a weighting function.

f RwdfQ = 0 (C6)

Because the b terms are arbitrary, the key is to choose the function xvk so that

fQR W kdQ = 0 (C7)

Shave (Interolation) Functions

The value of a function u may be defined in terms of its value at known points (uk) and shape, or

interpolation, functions (Nk) such that;

u() = N,(iq)ul + N 2 () u2 + .. +. +Nk()u k  (CS)

-- (1) N2(1) ... Nk ] ( .Uk-

k is the order of the function such as 1st (constant), 2nd (linear), 3rd (parbolic), 4th, etc. The points at

which the value of u is defined are called the nodal points, or nodes.

Lagrangian polynomial shape functions were used in the development of this thesis are may be

calculated by:

(TI-10 . .. (Tn- li.1) (Tn- T,,) . .. (TI- Tnk)
,D,, ('1) = - (C9)

(nl- T1 ) . .. (TI,- TI ,) (TI i- 71 i+0 . .. (71,i- n1k)

The variable 1 is an elemental coordinate. varies from -I at the left end to +1 at the right end of the
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element. The nodes are therefore distributed throughout the element with values from -1 to 1. For

example, a third order function may have nodes defined at -1, 0, +1.

Jacobians

A Jacobian allows the transformation from the integral about the boundary (dF) to the integral along

the element surface (drI). For a two-dimensional problem the Jacobian is defined as;

Therefore,

d- = IJI drl (CII)

In order to calculate the Jacobian, x and y must be expressed in terms of the variable T1. For a flat element

where (x1 , Yi) are the coordinated for the left-end of the element and (x2 ,y2 ) are the coordinates for the

right-end, x and y may be expressed by shape functions;

x = N1 1 
+ N2 x 2  y = N1y Y + N2 Y2  (C12)

and

ax __ @' D y J(I ___2yX + 1-x2 Y1 + Y2 (C13)
onxOil all a
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